Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поливинилхлорид углеводородами

    Низшие кислоты находят себе различное применение. Муравьиную кислоту, например, используют при силосовании зеленых кормов. Уксусную и масляную кислоты применяют для этерификации целлюлозы. Пропионовая кислота в виде кальциевой соли является отличным средством для консервирования хлеба. Кислоты s— g предпочитают каталитически восстанавливать в спирты, адипаты и фталаты которых служат превосходными пластификаторами поливинилхлорида. Кар боновые кислоты С —Сд можно с успехом применять в виде натровых солей в пенных огнетушителях кислоты Сд—Сц можно использовать для флотационных целей. Кислоты С12— ie поставляют мыловаренной промышленности. Для получения синтетического пищевого жира используют кислоты Сд—С в, предварительно освобожденные от всех дикарбоновых кислот. Высокомолекулярные кислоты is—Сг1 могут быть применены для производства смазочных масел и мягчителей для кожевенной промышленности (в комбинации с триэтанолами- ном). Кубовые остатки от перегонки превращают после кетонизации и восстановления в смеси углеводородов типа вазелина. Эти немногие примеры ири желании можно умножить, так как патентная литература по этому вопросу чрезвычайно обширна. [c.470]


    Исходным сырьем для получения поливинилхлоридных смол является хлорвинил. Мономер хлорвинила СН2 = СНС представляет собой газ, конденсирующийся в жидкость при —14° С. Получающийся при полимеризации поливинилхлорид представляет собой белый порощок с плотностью 1,4 Мг/м , нерастворимый в воде, спирте и бензине, набухающий в ароматических углеводородах и сложных эфирах. [c.412]

    Поливинилхлорид представляет собой аморфный порошок белого цвета, плохо растворимый в хлорированных углеводородах, смеси ацетона с бензолом, диоксане. Растворимость полимера уменьшается с повышением молекулярного веса. [c.28]

    Свойства перхлорвинила. Перхлорвинил представляет собой белый порошок или пористую крошку от белого до кремового цвета. Хорошо растворяется в ацетоне, дихлорэтане, хлорбензоле, ароматических углеводородах и др. Стоек к действию концентрированных кислот и щелочей, минеральных масел, бензина, спиртов. Температура размягчения перхлорвинила 85—100°С. При 130—140 °С он разлагается. Перхлорвинил обладает довольно высокой механической прочностью, хорошими диэлектрическими свойствами, водостойкостью и морозостойкостью. Он имеет хорошие адгезионные свойства. Пленки из перхлорвинила обладают более высокой адгезией и термопластичностью, чем пленки из поливинилхлорида. [c.35]

    К числу полимеров, построенных по типу предельных углеводородов алифатического ряда, следует отнести полиэтилен, полипропилен, полиизобутилен. Исходным мономером для получения полиэтилена в промышленности служит этилен. Для синтеза полиэтилена в препаративных целях могут быть использованы диазометан и поливинилхлорид. Полипропилен получают путем полимеризацип пропилена, полиизобутилеи—полимеризацией изобутилена. [c.193]

    Поливинилхлорид образует высоковязкие растворы в диоксане, тетрагидрофуране, галоидопроизводных углеводородов. Вязкость растворов полимера уменьшается с понижением его мо.чеку-лярного веса. [c.268]

    Поливинилхлорид (полихлорвинил). Имеет наибольшее значение среди высокомолекулярных галогенпроизводных углеводородов. Получают его эмульсионной (суспензионной) полимеризацией (стр. 100) хлористого винила (стр. 457) с перекисными инициаторами [c.470]

    Введение хлора в полиолефины приводит к изменению не только скорости, но и механизма окислительной деструкции. Из галогенпроизводных высокомолекулярных углеводородов лучше других изучен поливинилхлорид. При окислительной деструкции поливинилхлорида протекает также второй процесс — дегидрохлорирование, причем первый процесс ускоряется в результате второго. В окислительной деструкции поливинилхлорида значительная роль отводится активирующему действию концевых двойных связей (образующихся при синтезе в результате диспропорционирования) и наличию третичных атомов углерода, которые, как показано экспериментально, содержатся в поливинилхлориде вследствие небольшого разветвления молекулярных цепей. [c.276]


    Из высокомолекулярных галогенпроизводных углеводородов наибольшее значение имеют поливинилхлорид, поливинилиденхлорид и политетрафторэтилен. Известны также политрифторэтилен, поливинилфторид и поливинилиденфторид. [c.308]

    Такая циклизация характерна для 1,3-галогензамещенных углеводородов. Цинк отщепляет от поливинилхлорида только 84—87% хлора, что объясняется, по-видимому, изоляцией отдельных атомов хлора при их парном отщеплении  [c.308]

    Технический поливинилхлорид имеет молекулярную массу 18 000— 30 000, плотность 1350—1460 кг/м он не кристаллизуется его температура стеклования 87—95 С, разлагается при 130—150 °С растворим в кетонах, хлорированных углеводородах и сложных эфирах, лучше всего растворим в смесях полярного и неполярного растворителей, например ацетона с сероуглеродом или бензолом в мономере, воде, спиртах и предельных углеводородах поливинилхлорид нерастворим стоек к кислотам и щелочам при 20 °С. [c.309]

    Достоинство поливинилхлорида — высокая стойкость к действию кислот и щелочей. Это позволяет применять его в качестве химически стойкого конструкционного материала. Однако эксплуатировать его можно до 80° С, так как выше 120° С начинает выделяться хлористый водород. Набухает и растворяется в хлорзамещенных углеводородах (тетрахлорэтане, хлорбензоле и др.), в ацетоне. [c.384]

    ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ В первой главе приведен аналитический обзор литературных данных по методам синтеза, свойствам и основным областям применения карбоксилатов двухвалентных металлов. Основное внимание уделено получению и применению стеаратов Са, Ва, Сс1, Zn и РЬ как термостабилизаторов поливинилхлорида. Рассмотрены также некоторые вопросы синтеза и стабилизации высших хлорсодержащих углеводородов в присутствии катализаторов. [c.7]

    На измерении амплитуды сигнала свободной индукции основаны методы определения общего содержания водорода в углеводородах, наполнителя в полиамидных сополимерах (в том числе, эластомеров, полиэтилена), полиэтилена в полипропилене, полибутадиена в полистироле, мономеров в поливинилацетате и полибутадиене, пластификатора в пленках поливинилхлорида, твердого вещества в латексах. По амплитуде сигнала эхо устанавливают степень полимеризации метилметакрилата, твердый остаток в водных отходах, влаго-содержание катализаторов, масло в восках. Релаксационные измерения используют для определения скорости полимеризации стирола, вязкости масла и др. [c.264]

    Кристалличность поливинилхлорида не превышает 10%, поэтому его относят к аморфным полимерам. Он растворим при нагревании в хлорированных углеводородах, циклогексаноне и некоторых других растворителях. Благодаря высокому содержанию клора поливинилхлорид затухает при выносе из пламени, но при [c.105]

    О с фенольными, крезольяымп и ксилепольными смесями использовались в Германии во время войны как пластификаторы, особенно для поливинилхлорида. С этой целью фенолы смешивали с мерзолем и через эту смесь при температуре около 40° продували аммиак. После отделения хлористого аммония и промывки 2%-ным раствором хлористого кальцпя полученный эфир освобождали от избыточного парафинового углеводорода продувкой водяным наром под вакуумом. В заключение продукт обрабатывался 2% тонсиля (отбеливающая земля) и фильтровался [46]. [c.141]

    Поскольку последний пример является примером несимметричного разветвленного высокомолекулярного алифатического углеводорода, то следует указать также па полимеры, полученные Котманом [8] восстановлением поливиниловых хлоридов. Эти полимеры по некоторым физическим свойствам подобны полиэтилену. Их инфракрасные спектры качественно напоминают таковые полиэтилена. Однако количественное определение показывает, что соотношение метильных групп к метиленным составляет здесь лишь величину порядка 1 100. Эта величина значительно меньше, чем соотношения, наблюдавшиеся у большинства полиэтиленов, и свидетельствует о том, что поливинилхлорид несколько более разветвлен, чем большинство полиэтиленов. Плотности этих продуктов в литературе не приводятся. [c.170]

    На базе газов нефтепереработки, природных и иопутных газов в СССР строятся и работают крупные заводы по производству различных продуктов органического синтеза. Так, в большом масштабе производятся фенол и ацетон ио методу, разработанному нроф. П. Г. Сергеевым, создана промышленность синтетического спнрта, организовано производство стирола и полистирола, питрила акриловой кислоты, поливинилхлорида и других химических продуктов, являющ,ихся в свою очередь сырьем для промышленности синтетического каучука, пластических масс, искусственного волокна и других отраслей промышленности. Однако уровень развития нефтехимической промышленности СССР все еш,е отстает от потребностей народного хозяйства нашей страны. Углеводороды природных газов используются для химической переработки все еш,е в недостаточном объеме. [c.4]

    Продукты, получаемые гидрохлорированием ацетиленовых углеводородов. Хлористый винил СН2 = СНС1 (бесцветный газ т. конд. —13,9°С) уже встречался в предыдущем тексте. Это — один из важнейших мономеров, широко применяемый для получения разнообразных полимерных материалов. При полимеризации в присутствии пероксидов он дает поливинилхлорид  [c.133]


    Винипласт — продукт термомех эпической пластификации поливинилхлорида (при 155—163°) с добавкой небольших количеств стабилизаторов и наполнителей. Винипласт стоек к действию растворов кислот, солей и разбавленных щелочей, но не устойчив в условиях воздействия ароматических углеводородов. Он поддается механической обработке, сваривается и склеивается, сохраняет химическую и достаточную механическую прочность при температурах не выше 40—60°. [c.90]

    Реакции деструкции и сшивания протекают одновременно, однако в зависимости от химического строения полимеров одна из них может резко преобладать. Деструкции подвергаются главным образом полимеры а, а-замещенных этиленовых углеводородов (полиметилметакрилат, полиизобутилен, поли-а-метилстирол), целлюлоза, галогенсодержащие полимеры (поливинилхлорид, по-ливинилиденхлорид, политетрафторэтилен). Почти у всех этих полимеров невысокие значения теплоты полимеризации, а при их пиролизе образуется большое количество мономера (см. табл. 15.1). [c.245]

    Галогенопроизводные предельных углеводородов, например СН2=СНС1 и Ср2=Ср2, служат исходными мономерами для получения ценных полимеров (поливинилхлорида, фторопласта). [c.306]

    Если в молекуле углеводорода часть атомов водорода заменена полярными заместителями — такими, как атомы Вг, С1 или группы —ОН, —СЫ, —СООН, то механические свойства полимера резко меняются. Полярные заместители повышают потенциальный барьер молекулы и тем самым увеличивают жесткость цепей. Поэтому такие полимеры, как поливинилхлорид, поли-нитрилакрил, поливинилацетат, целлюлоза и другие, при комнатной температуре неэластичны. [c.188]

    Галогенпроизводные углеводородов [4]. Химические превращения галогенпроизводных углеводородов лучше всего изучены на примере поливинилхлорида [—СНг—СНС1—] В результате хлорирования получается продукт, содержащий 62—65% хлора (а иногда до 75%), что соответствует одному дополнительному атому хлора на три элементарных звена поливинилхлорида  [c.231]

    Восстановлением поливинилхлорида с помощью LiAlH4 или LiH получены углеводороды, обладающие свойствами, близкими к свойствам полиэтилена. [c.232]

    В этих реакциях поливинилхлорид ведет себя аналогично 1,3-ди-хлорзамещенным низкомолекулярным углеводородам. Такая циклизация известна для у-хлорбутилбензола и наблюдается при конденсации 1-хлор-З-бромпропана с бензолом. [c.233]

    При нагревании полимерных галогенпроизводных, спиртов, нитрилов химическая природа полимера изменяется раньше, чем могла бы начаться термическая деполимеризация. Так, при нагревании полимерных хлорпроизводиых углеводородов (поливинилхлорида, поливинилиденхлорида) до температуры выше 140°С происходит отщепление хлористого водорода (рис. 45), и выделить мономер не удается. Полимер [c.288]

    Из нефтяных углеводородов путем последовательной химической переработки получают целый ряд различных химических соединений непредельные углеводороды, спирты, кислоты, эфиры, альдегиды—продукты, играющие огромную роль как для изготовления предметов бытового потребления, так и для развития современной техники. Так, содержащийся в газах крекинга этилен при взаимодействии с хлором образует дихлорэтан, являющийся исходным сырьем для получения поливинилхлорида. Гидратацией этилена под действием катализаторов получается синтетический этиловый спирт, являющийся важным исходным сырьем для ряда химических процессов. Эта реакция, открытая А. М. Бутлеровым и В. Горяйновым, сохранила важное техническое значение и до настоящего времени. [c.69]

    При пластнфигсацин полярных полимеров применяют такие ве-щества, как глицерин. Для пластификации поливинилхлорида используют сложные эфиры, но не углеводороды. [c.453]

    Аминопласт (ГОСТ 9395—80) марок КФА1, КФА2 изделия, получаемые из него методом горячего прессования, стойки в слабых растворах кислот и щелочей. Стекло органическое конструкционное (ГОСТ 15809—70) устанавливают в люках и используют для изготовления различных деталей. Пентапласт (ТУ 6-05-1422—71), обладающий высокой химической стойкостью к кислотам, щелочам, органическим растворителям, применяют как антикоррозионное покрытие. Литьевые изделия из полиамидов, в том числе из капрона, стойки к воздействию углеводородов, органических растворителей, масел, щелочей, солнечной радиации в интервале температур —60. .. +70 °С (ГОСТ 10589—73). Поливинилхлориды, в частности винипласт, используют для изготовления пленочных и листовых материалов 102  [c.102]

    По своим свойствам хлорсульфонированный полипропилен аналогичен хлорированному. Вязкость хлорсульфонированного полипропилена в растворе, однако, ниже вязкости хлорированного полипропилена с таким же содержанием хлора и зависит от общего содержания хлора [79]. Хлорсульфонированный полимер пропилена полностью растворим в хлорированных и ароматических углеводородах, частично — в сложных эфирах, кетонах, не растворяется в кислотах и спиртах. При температуре выше 110° С н под действием ультрафиолетового излучения полимер претерпевает деструкцию, которая сопровождается отщеплением хлористого водорода и сернистого ангидрида. Отсюда понятна необходимость стабилизации хлорсульфонированного полипропилена, например стабилизаторами, применяемыми для защиты поливинилхлорида. [c.137]

    Ф. из р-ров с фазовым распадом при охлаждении используют при получении волокон из полиолефинов (р-ритепи - высококипящие углеводороды), предложено также для волокон из полиакрилонитрила (смесь ДМФА с диметилсульфоном или мочевиной), поливинилового спирта (вода с мочевиной, капролактам). поливинилхлорида (капролактам или его смеси с циклогексаноном) и др. Ф. производится в шахте с охлаждением или в охладит, ванне. Волокна подвергают пластификац. вытягиванию. Р-ритель удаляют осторожной (напр., вакуумной) сушкой или промывкой легкотекучими жидкостями, смешивающимися с р-рителем полимера (во мн. случаях водой), с послед, сушкой. После этого,, при необходимости, проводят термич. вытягивание и термообработку. Практич. применение метод нашел при гель-формовании высокопрочных нитей на основе сверхвысокомол. полиэтилена. [c.122]

    Установка термического пиролиза включает дробилку, шнековый питатель, печь пиролиза, скруббер для промывки пирогаза, холодильник, ректификационную колонку разделения углеводородов и камеру сжигания отходящих газов. В случае переработки поливинилхлорида предусматривается скруббер для поглощения НС1. Печь пиролиза отходов представляет обофеваемую вертикальную цилиндрическую камеру, в которой измельченные пластмассовые отходы перемешаются под действием силы тяжести вниз, а продукты пиролиза, выходящие через верх печи, направляются на переработку. [c.434]

    Из числа хлорсодержащих продуктов особо важное народнохозяйственное значение имеют полимерные материалы, растворители, пестициды. Например, поливинилхлорид (—СНг—СНС1—) — пластическая масса, получаемая полимеризацией хлористого винила найрит (—СНг—СС1 = СН—СНг—)п — каучук, получаемый полимеризацией хлоропрена перхлорвиниловая смола — полимер, получаемый глубоким хлорированием поливинилхлорида раствот рители — хлорированные углеводороды с одним или двумя атомами углерода в молекуле пестициды — средства для борьбы с сорняками и вредителями растений. [c.30]

    Многие макромолекулярные соединения лучше растворяются в смесях растворителей, чем в соответствующих чистых растворителях [20]. Так, поливинилхлорид нерастворим ни в ацетоне, ни в дисульфиде углерода, но растворяется в их смеси. Известны и противоположные эффекты. Например, полиакри-лонитрил растворяется как в малодинитриле, так и в М,М-ди-метилформамиде, но не в их смеси [20]. При комнатной температуре мыла не растворяются ни в этиленгликоле, ни в углеводородах, но растворяются в смеси этих веществ, в которой этиленгликоль сольватирует ионный центр молекулы, а углеводород неполярную цепь жирной кислоты, [128]. [c.69]

    Винипласт — термопластичнъш м.атериал, состоящий в основном из макромолекул поливинилхлорида с молекулярной массой от 18 до 120 тыс., к которому для предотвращения термической деструкции добавлен стабилизатор. Винипласт удачно сочетает антикоррозионную способность с хорошими физико-механическими свойствами. Он не подвергается разрушению в минеральных кислотах (за исключением сильных окислителей), щелочах, в солевых растворах, во многих органических растворителях, кроме ароматических и хлорированных углеводородов. Ценным свойством винипласта является его пластичность при нагревании, которая позволяет легко изготавливать материалы, детали и конструкции любой формы штампованием, выдавливанием и гнутьем, так же как из металлов. К тому же его можно резать, строгать, сверлить и полировать. Изделия из винипласта можно сваривать токами высокой частоты и склеивать специальными клеями. К недостаткам относятся малая термическая устойчивость (выше 50 °С), набухаемость в воде, низкая ударная вязкость, большой коэффициент термического расширения и постепенная деформация под нагрузкой. [c.142]

    Наибольшее распространение среди карбоцепных получили полимеры непредельных углеводородов (полиэтилен, полипропилен, полистирол и др.) и галогенпроизводных непредельных углеводородов (поливинилхлорид, фторпроизводные полимеры), а также производных ненасыщенных спирюв, кислот и их эфиров (поливиниловый спирт, поливинилацетат, полиакрилонитрил и др.) и диеновых углеводородов (полибутадиен, полиизопрен, полихлоропрен и др.). Полимеры непредельных углеводородов в промышленности получают по радикальной, ионной и ионнокоординационной полимеризации соответствующих мономеров. [c.52]

    Поливинилхлорид (-СН2-СНС1-) получают радикальной полимеризацией винилхлорида, например, под действием света, чаще всего водно-эмульсионным или водно-суспензионным методами. Полимеры винилхлорида растворяются в галогенпроизводных углеводородов и не стойки к действию ионизирующих излучений. При длительном хранении полимер желтеет и деструкти уется с выделением вредных веществ. Окислительные агенты действуют на него разрушительно. Изделия из поливинилхлорида имеют высокую поверхностную твердость и достаточно хрупки, поэтому для получения пленочных материалов его пластифицируют сложными эфирами. Даже пластифицированный поливинилхлорид имеет невысокую морозостойкость. [c.57]


Смотреть страницы где упоминается термин Поливинилхлорид углеводородами: [c.102]    [c.102]    [c.10]    [c.452]    [c.8]    [c.157]    [c.335]    [c.458]    [c.24]    [c.475]   
Пластификаторы (1964) -- [ c.378 , c.379 , c.381 ]




ПОИСК





Смотрите так же термины и статьи:

Поливинилхлорид



© 2025 chem21.info Реклама на сайте