Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дебая электростатический,

    Как видно из электростатической теории электролитов, зависимость lgY от корня квадратного из ионной силы является линейной. Это было подтверждено многочисленными экспериментальными исследованиями электролитов с очень малыми концентрациями. Из всего сказанного следует, что уравнение (XVI, 48) справедливо лишь для сильно разбавленных растворов, так как при выводе уравнения для потенциала ионной атмосферы были сделаны некоторые существенные математические упрощения и физические предположения. Уравнение (XVI, 48) называется предельным уравнением Дебая—Гюккеля для Коэффициент А зависит от температуры (непосредственно и через диэлектрическую проницаемость О). Проверка [c.413]


    Сложность точных математических решений затрудняет применение электростатической теории к более концентрированным растворам, но она развивается в этом направлении. Основным недостатком электростатической теории является то, что почти не учитывается взаимодействие ионов с молекулами растворителя. Использование диэлектрической проницаемости как макроскопической характеристики раствора не позволяет учесть электрическое взаимодействие ионов с дипольными молекулами растворителя на малых расстояниях. Этот недостаток также ограничивает применимость теории Дебая — Гюккеля областью разбавленных растворов, в которых взаимодействие каждого иона с молекулами растворителя проявлено полностью и остается практически неизменным при дальнейшем уменьшении концентрации (разбавлении). [c.416]

    Опыты Вина и Дебая — Фалькенгагена являются убедительным экспериментальным доказательством реального существования ионной атмосферы и позволяют представить себе характер ее строения. Представление о ионной атмосфере является одним из фундаментальных положений электростатической теории электролитов. [c.436]

    Расчет на основе электростатической теории растворов электролитов, Теория Дебая — Гюккеля дает следующие уравнения для коэффициента активности [13, 19]  [c.23]

    Начала количественной теории сильных электролитов, разработанные Дебаем и Хюккелем (1923), имели целью отразить влияние этого электростатического взаимодействия между ионами на различные свойства раствора. Эта теория, учитывающая взаимодействие иона с окружающей его ионной атмосферой, дала возможность установить количественную связь между радиусом этой атмосферы и концентрацией электролита, определить скорость восстановления ионной атмосферы при перемещении иона (время релаксации— см. 168) и решить ряд других вопросов, важных для понимания процессов прохождения тока через раствор. Однако теория построена на ряде упрощающих допущений и до настоящего времени применима лишь к растворам с очень низкой концентрацией. [c.393]

    Основные понятия электростатической теории сильных электролитов Дебая и Хюккеля [c.438]

    Для электрического потенциала г) используем уравнения теории Дебая — Хюккеля, в которой принимается, что электролиты в растворе диссоциированы полностью. Электростатическое взаимодействие противоположно заряженных ионов приводит к тому, что вокруг положительно заряженных ионов вероятность нахождения отрицательно заряженных будет больше, а вокруг отрицательных ионов больше будет вероятность нахождения положительных. При этом раствор в целом остается электронейтральным. [c.439]


    Дебаем и Онзагером предложена теория электрической проводимости растворов, представляющая собой развитие основных положений электростатической теории растворов (см. 156). По теории Дебая — Онзагера снижение эквивалентной электрической проводимости при переходе от бесконечно разбавленного раствора к растворам конечных концентраций связано с уменьшением скоростей движения ионов. Это объясняется появлением эффектов торможения движения ионов, возникающих за счет сил электростатического взаимодействия между ионом и его ионной атмосферой. [c.461]

    Ориентационное взаимодействие возникает между молекулами, обладающими постоянным дипольным моментом. Согласно теории взаимодействия полярных молекул, разработанной Дебаем, Б. В. Ильиным и другими исследователями, при сближении полярных молекул будет проявляться электростатическое взаимодействие между ними, называемое ориентационным эффектом. [c.75]

    Электростатическая теория разбавленных растворов сильных электролитов, развитая Дебаем и Гюккелем в 1923 г., позволила теоретически вычислить средний коэффициент активности электролита, эквивалентную электропроводность сильных электролитов, а также теоретически обосновала правило ионной силы. При этом они сделали ряд предположений, справедливых только для предельно разбавленных растворов. Во-первых, они предположили, что единственной причиной, вызывающей отклонение свойств раствора электролита от идеального раствора, является электростатическое взаимодействие между ионами. Во-вторых, они не учитывали размеров ионов, т. е. рассматривали их как безразмерные точечные заряды. В-третьих, электростатическое взаимодействие между ионами они рассматривали как взаимодействие между ионом и его ионной атмосферой. Ионная атмосфера — это статистическое образование. [c.251]

    Теоретический расчет, выполненный Дебаем и Хюккелем на основании электростатической модели строения раствора электролитов, показывает, что в разбавленных растворах (с С 1 10- г-экв/л) уменьшение электрической проводимости, вызываемое взаимным торможением ионов, пропорционально корню квадратному из концентрации. Зависимость X (и ц) от - /с для таких растворов выражается прямой линией. Уравнение, описывающее эт/ зависимость, имеет вид к = Х — а ]Т, где а — постоянная, зависящая от природы растворителя, его диэлектрической проницаемости, вязкости, природы электролита и температуры. [c.186]

    Теория Дебая —Хюккеля позволяет рассчитать коэффициент активности ионов в электролите. Коэффициент активности соответствует работе, которая была бы совершена, если 1 моль зеш,ества из некоторого воображаемого раствора без электростатического взаимодействия перенести в раствор, в котором он имеет место. [c.333]

    Теоретические расчеты коэффициентов активности основаны на представлениях, которые раскрывают природу сил, вызывающих отклонение свойств реальных растворов от свойств идеальных. Для расчета коэффициентов активности ионов используется теория Дебая —Хюккеля. По этой теории ион в растворе рассматривается как заряженная частица, окруженная ионной атмосферой преимущественно из противоположно заряженных ионов, а взаимодействие иона с ионной атмосферой имеет электростатический (кулоновский) характер. Коэффициенты активности зависят от заряда иона и параметров ионной атмосферы ее размеров и плотности. Параметры ионной атмосферы определяются ионной силой раствора /, вычисляемой как полусумма произведений концентрации всех ионов в растворе на квадрат их заряда 2  [c.24]

    Согласно теории Дебая — Гюккеля, сильные электролиты полностью диссоциированы на ионы. Однако свободному движению частиц в жидкости препятствуют электростатические силы, действующие между ионами. В растворе, также как и в кристалле, каждый ион окружен ионами противоположного знака, так называемой ионной атмосферой, которая перемещается вместе с центральным ноном и ограничивает его подвижность. В результате электропроводность раствора сильного электролита оказывается меньше той величины, которая должна быть, если бы все ионы могли беспрепятственно перемешаться в электролитическом поле. Следовательно, создается впечатление, что в растворах сильных электролитов число свободных ионов меньше, чем их общая (аналитическая) концентрация. Поэтому для характеристики сильного электролита вводится понятие эффективной (т. е. проявляющей себя в действии) концентрации ионов, называемой также активностью а. Эта величина аналогична концентрации свободных гидратированных ионов (согласно теории электролитической диссоциации). [c.41]

    Предположение об электростатическом взаимодействии ионов объясняет отличие растворов сильных электролитов от идеальных. Вычисляя работу образования ионной атмосферы, можно количественно оценить степень отклонения от идеального состояния и найти коэффициент активности электролита. В результате получается уравнение предельного закона Дебая—Гюккеля, справедливое для сильно разбавленных бинарных растворов сильных электролитов  [c.214]


    Характер электрической проводимости разбавленных растворов сильных электролитов был объяснен Онзагером с помощью электростатической теории Дебая и Гюккеля. [c.223]

    Недостатки теории Дебая — Гюккеля — Онзагера связаны с несовершенствами и ограниченностью ее теоретических допущений, рассматривающих лишь электростатическое взаимодействие ионов и усредненное влияние окружающей среды. В современных теориях концентрированных растворов электролитов, кроме образования различных ассоциатов, учитываются сольватация ионов и их конечные размеры, асимметричность распределения концентрации в движущейся ионной атмосфере, локальные изменения вязкости вблизи ионов, взаимодействие электрофоретического и релаксационного торможения и другие эффекты. Очевидно, что уточненные исследования растворов электролитов возможны лишь с учетом всей сложности их строения и разнообразных взаимодействий. [c.225]

    Статистические теории полиэлектролитов можно рассматривать как попытки применения подхода Дебая и Гюккеля к описанию поведения многовалентных ионов. Они включают расчет потенциала электростатического поля макроиона, имеющего заранее заданную конформацию. Обычно используют сферические или цепные модели макроионов, что означает применимость соответствующих теорий к определенным группам полиэлектролитов. При расчете потенциала в сферических моделях предполагают равномерное непрерывное распределение заряда или по поверхности, или в объеме сферы. В моделях жесткого стержня макроион рассматривают в виде цилиндра с зарядами, размазанными по поверхности или в объеме, или с дискретными равноудаленными зарядами. Предложены теории, в основе которых лежит модель случайно свернутой цепи с нанесенными на нее дискретными зарядами. Вокруг каждого фиксированного заряда создается ионная атмосфера, подобная существующей в растворе низкомолекулярного электролита с ионной силой, соответствующей кон- [c.51]

    В дальнейшем была предложена теория сильных электролитов Дебая — Гюккеля, которая, основываясь на представлении об их полной диссоциации, объяснила физический смысл экспериментально определяемых значений а и их зависимость от концентрации раствора и валентного типа электролита с позиций электростатического взаимодействия ионов между собой. [c.161]

    ЭЛЕКТРОСТАТИЧЕСКАЯ ТЕОРИЯ СИЛЬНЫХ ЭЛЕКТРОЛИТОВ ДЕБАЯ — ГЮККЕЛЯ [c.164]

    Современная количественная теория растворов сильных электролитов, получившая название электростатической, была предложена в 1923 г. П. Дебаем и Э. Гюккелем. Она основана на представлении о полной диссоциации сильных электролитов с учетом двух факторов  [c.164]

    Электростатическая теория коагуляции Г. Мюллера. В отличие от адсорбционной теории эта теория исходила из того, что введение электролита в золь не изменяет общего заряда в двойном слое частицы, а вызывает сжатие диффузного слоя. Уменьшение толщины ионной атмосферы приводит к снижению -потенциала, которое может быть вычислено на основе теории сильных электролитов Дебая—Хюккеля. Вследствие снижения -потенциала уменьшается стабильность золя. [c.426]

    Соотношение (4.3) справедливо лишь для слабых электролитов с электрической проводимостью, пропорциональной числу ионов в растворе для растворов сильных электролитов, ионы которых в растворе взаимодействуют, оно непригодно. Количественный учет межионного взаимодействия произвели П. Дебай и Е. Хюккель. Они создали достаточно стройную теорию электростатического взаимодействия гидратированных ионов в растворе, получившую дальнейшее развитие (главным образом в отношении электрической проводимости растворов) в трудах Л. Онзагера. В соответствии с основными положениями этой теории взаимодействие ионов рассматривается не только с позиций электростатического притяжения или отталкивания, но и теплового движения, которое стремится разрушить упорядоченное чередование положительно и отрицательно заряженных ионов. В результате действия этих двух сил каждый ион одного знака (рис. 4.1, а) будет окружен диффузной сферой из ионов другого знака. [c.81]

    Возможность образования различных ассоциатов совершенно не укладывается в рамки теории Дебая — Гюккеля, согласно которой единственным результатом электростатического взаимодействия является возникновение ионной атмосферы. Невозможность, по крайней мере в настояш,ее время, построения теории, адекватно отражающей природу растворов электролитов, привела, как уже отмечалось, к использованию эмпирических и иолуэмиирических уравиений. К наиболее часто применяемым уравнениям подобного рода относятся формулы Гюнтельберга [c.99]

    Возникновение электрохимии как науки связано с именами Гальвани, Вольта и Петрова, которые на рубеже XVHI и XIX веков открыли и исследовали электрохимические (гальванические) элементы. Деви и Фарадей в первые десятилетия XIX века изучали электролиз. Быстрое развитие электрохимии в конце XIX века связано с появлением теории электролитической диссоциации Аррениуса (1887) и с работами Нернста по термодинамике электродных процессов. Теория Аррениуса развита Дебаем и Гюккелем (1923), которые разработали электростатическую теорию. [c.384]

    Гаич (1906) и Бьеррум (1906) выдвинули гипотезу о полной диссоциации (ион 13ЯЦИИ) сильных электролитов. В дальнейшем Бьеррум, Мильнер (1912) и Гс1Ш (1918) пытались на основе этой гипотезы создать новую теорию сильных электролитов, но безуспешно. Основы электростатической теории электролитов были заложены несколько позднее (1923 г.) работами Дебая и Г юкче. 1я. [c.395]

    Наиболее достоверные данные о дипольных моментах можно получить, если проводить исследование вещества в газообразной фазе при очень низких давлениях, когда расстояния между молекулами настолько значительны, что электростатическое взаимодействие между ними почти отсутствует. Из всех известных методов наиболее широкое распространение получили методы определения дипольных моментов, основанные на измерении диэлектрической проницаемости паров и разбавленных растворов полярных веществ в бездипольных растворителях. Большинство экспериментальных значений дипольных моментов получены при помощи этих методов, в основе которых лежит статистическая теория полярных молекул, разработанная Дебаем. [c.54]

    На основе электростатической теории сильных электролитов Дебай, Гюккель и Онзагер получили выражение для эквивалентной электропроводности предельно разбавленных растворов сильных электролитов. Изменение эквивалентной эле.чтропроводности растворов сильных электролитов с концентрацией электролита объясняется торможением движения ионов в электрическом поле из-за их электростатического взаимодействия. С увеличением концентрации раствора ионы сближаются и электростатическое взаимодействие между ними возрастает. При этом учитываются два эффекта, вызываюш,их электростатическое взаимное торможение ионов электрофоретический и релаксационный эффекты. [c.261]

    Важную роль в развитии элек рохимии сыграли также теория электролитической диссоциации Аррениуса (1887), теория активностей Льюиса и электростатическая теория Дебая и Хюккеля. [c.360]

    Закон ионной силы получил количественное толкование в развитой Дебаем и Хюккелем электростатической теории растворов, которую рассмотрим ниже. Однако следует заметить, что задолго до теоретического истолкования закона ионной силы была отмечена его ограниченность (Д. Н. Брёнстедт, 1922), особенно при высоких концентрациях. [c.388]

    Для вычисления электростатического потенциала щ иона к-го сорта относительно окружающей его ионной атмосферы Дебай и Хюккель ввели два приближения, позволяющие применить уравнение Пуассона, что существенно упрощает задачу. Первое приближение заключается в замене точечных зарядов ионов непрерывно распределенным зарядом переменной плотности. Второе — в предположении действия кулоновского поля, сог.пасно которому два точечных заряда взаимодействуют друг с другом с силой, обратно пропорциональной квадрату расстояния. Рассмотрим 1 см раствора, содержащий Л/ь Л/г,. .., Л/ - ионов каждого сорта с валентностями 21, 22,. . ., 2j. [c.391]

    Зависимость электрической проводимости от частоты приложенного электрического поля была предсказана теоретически Дебаем и Фалькенгагеном и позднее опытным путем подтверждена Сакком. С помощью электростатической теории можно объяснить это явление. [c.412]

    Установлено, что расчеты по теории Дебая — Гюккеля — Онзагера удовлетворительно согласуются с экспериментом лишь для очень разбавленных (порядка 0,001 моль/л и менее) растворов электролитов. В неводных растворах с низкой диэлектрической проницаемостью растворителя наблюдается появление максимумов и минимумов молярной электрической проводимости с ростом концентрации так, что в некотором интервале концентраций Я, растет при увеличении концен1рации. Такая аномальная электрическая проводимость не может быть объяснена с позиций простой электростатической теории и требует учета ассоциации ионов с образованием ионных пар, тройников и более сложных частиц. Например, можно предположить, что с ростом концентрации разбавленного раствора электролита АВ сначала его электрическая проводимость обусловлена ионами А+ и В , затем происходит образование незаряженных ионных пар (А+В ), а при еще более высоких концентрациях — ионных тройников (А" В А + ) и (В А В ). В соответствии с этим рост концентрации электролита сначала приводит к росту электрической проводимости, затем к ее падению, а потом снова к росту. В еще более концентрированных растворах может происходить объединение ионных тройников друг с другом и с другими ионами в еще более сложные незаряженные ассоциаты, что вызывает повторное снижение электрической проводимости. [c.224]

    В. к. Семенченко (1924) и Н. Бьеррум (1926) указали, что при расчетах в теории Дебая — Гюккеля не учитывается возможность приближения противоположно заряженных ионов на такие расстояния, на которых энергия электростатического притяжения ионов оказывается больше энергии их теплового движения. В результате этого фактически образуется новая частица — ионная пара. Для растворов симметричных электролитов ионная пара в целом незаряжена, но обладает дипольным моментом. В растворах несимметричных электролитов ионные пары несут заряд, отличный от заряда ионов раствора, и возможна дальнейшая ассоциация с участием этих ионных пар. [c.45]

    Формулу (111.47) можно получить также двумя другими способами. В первом из них, описанном в оригинальной работе Дебая и Гюккеля, Аи рассчитывали на основе мысленного процесса заряжения центрального иона и всех ионов, входящих в ионную атмосферу. При этом в процессе заряжения учитывалось перераспределение ионов, возникающее благодаря нх электростатическому взаимодействию. Работа заряжения, рассчитанная этим способом (процесс заряжения по Дебаю), относилась ко всем ионам системы, а потому для нахождения величины Аи ее нужно было продифференцировать по числу ионов данного вида I. Во втором способе, который получил название процесса заряжения по Гюн-тельбергу. предполагалось, что процесс мысленного заряжения ионов не сопровождается их перераспределением (предполагалось, что они уже до заряжения приобрели окончательное распределение, характерное для заряженной ионной атмосферы). Этот способ эквивалентен процессу заряжения конденсатора, состоящего из центрального иона и окружающей его сферической оболочки с постоянным радиусом 1/х. Работа заряжения по методу Гюн-тельберга сразу дает величину АО. Следует подчеркнуть, что различные способы расчета изменения энергии центрального иона вследствие его взаимодействия с ионной атмосферой дают совпадающие результаты лишь при выполнении соотношения (111.31). В условиях нелинейной зависимости р от ф различные способы расчета АЬ приводят к разным результатам. До сих пор не установлено, какой способ является более точным, так как уравнение Пуассона — Больцмана, получающееся при подстановке (111.30) в (111.27), не имеет строгого обоснования в статистической механике. [c.43]

    В растворах сильных электролитов вследствие большой концентрации ионов по сравнению с pa i ворами слабых электролитов той же концентрации электростатическое взаимодействие между ионами приобретает большее значение. Теория сильных электролитов П. Дебая и Э. Хюккеля имела целью отразить влияние электростатического взаимодействия между ионами на различные свойства растворов и объяснить причину уменьшения активной концентрации электролита по сравнению с его общей аналитической концентрацией. [c.132]

    Величина дипольного момента, равная 1 10 электростатических единиц, получила название одного дебая (D). Рассмотрим дипольные моменты гомологического ряда жирных спиртов. Дипольные моменты спиртов, начиная от метилового и включая такие, как С12Н25ОН, изменяются мало (от 1,60—IJOD). Постоянство дипольного момента спиртов показывает, что он характеризует группу ОН. Дипольные моменты должны складываться как векторы. [c.536]


Смотреть страницы где упоминается термин Дебая электростатический,: [c.271]    [c.536]    [c.302]    [c.313]    [c.331]    [c.89]    [c.52]    [c.59]   
Физическая химия растворов электролитов (1952) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Дебай



© 2025 chem21.info Реклама на сайте