Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория активностей Льюиса

    Основное достоинство метода активностей (Льюис, 1923 г.) заключается в том, что он позволяет провести более обобщенную и точную количественную трактовку различных свойств растворов сильных электролитов, чем то возможно на основе классической теории электролитической диссоциации. Однако из-за эмпирической природы самого коэффициента активности трактовка эта имеет формальный характер и для понимания сущности явлений дает весьма мало. Так как по мере повышения концентрации индивидуальные особенности отдельных частиц начинают выявляться все более резко, необходимые обобщения (например, ионная сила) оказываются возможными лишь применительно к разбавленным растворам, областью которых пока практически и ограничена широкая применимость рассматриваемого метода..  [c.185]


    Вследствие этого и оказывается, что термодинамика нередко опережает статистику. Действительно, как была создана теория квантов В результате термодинамических исследований Планка. Как была создана теория химических констант В результате термодинамических исследований Нернста, приведших к формулам, содержащим эти константы и подсказавшим способы теоретического вычисления химических констант. Как была создана теория активности, которая ныне представляет собой обширную область статистики В результате чисто термодинамических исследований Льюиса. Как была создана теория вырождения газов, столь актуальная в статистике Впервые теория вырождения газов была выдвинута Нернстом в связи с его термодинамическими исследованиями. [c.11]

    Теория активностей Льюиса [c.381]

    Хотя Льюис ввел функцию активности в 1907 г., еще в начале 20-х годов ее использование для точного термодинамического исследования растворов электролитов находилось в зачаточном состоянии. Однако идея о полной ионизации сильных электролитов носилась в воздухе, и коэффициенты активности выражались через общую концентрацию ионных компонентов, а не через величины, которые по теории Аррениуса предполагались истинными концентрациями ионов. Считалось, что определенные таким образом коэффициенты активности в разбавленном водном растворе всегда уменьшаются с увеличением концентрации электролита. [c.277]

    В настоящее время, в соответствии с теорией активности Льюиса, изменение растворимости насыщающих растворов солей под влиянием других электролитов рассматривается в зависимости от характера изменения коэффициента активности. [c.94]

    В конце XIX — начале XX в. идеи Аррениуса получили дальнейшее развитие. В конце 1910-х годов. В. Мак-Льюис детально разрабатывает теорию активных соударений молекул. Исходя из этой теории он рассчитывает скорости протекания химических реакций в газовой фазе. [c.52]

    Для количественной оценки свойств сильных электролитов и концентрированных растворов слабых электролитов (т. е. электролитов, для которых теория электролитической диссоциации неприменима) вводятся понятия активности и коэффициента активности (Льюис). [c.9]

    В. К. Семенченко отмечает, что метод Льюиса до некоторой степени аналогичен методу теории относительности Эйнштейна. Как теория относительности сохраняет (в своей специальной ча> стп) основные законы динамики, вводя понятие о переменной массе, зависящей от условий, в которых находится система, так и теория активности пытается сохранить формулировки термодинамических соотношений при помощи обычного вида потенциалов (химических), вводя понятие об эффективной концентрации (активности), зависящей от окружающих условий. [c.34]


    Коэффициент активности, по теории сильных электролитов, зависит от валентности иона и от ионной силы раствора. Ионная сила раствора — мера напряженности электрического поля, существующего в растворе. Ионная сила х вычисляется по формуле, предложенной Льюисом и Рэндаллом  [c.36]

    Из сказанного следует, что с точки зрения теории Льюиса в шлаках основанием является ион кислорода. Поэтому физической мерой основности шлаков следовало бы считать концентрацию свободных ионов 02 . Точнее такой мерой является активность ионов кислорода, подобно тому как активность иона водорода определяет кислотность водных растворов. Активность 0 в шлаковых расплавах может быть измерена методом э.д. с. с помощью одного из описанных выше кислородных электродов в сочетании с электролитом, где известна величина а 2 .  [c.255]

    При решении же прикладных задач равновесий жидкость — пар широко используют функции фугитивности и активности которые оказываются во многих отношениях очень удобными. Гиббс, создавший завершенную теорию фазовых равновесий,, использовал только понятие химического потенциала, функции фугитивности, активности были предложены Льюисом значительно позднее [4]. [c.10]

    Интересно отметить, что еще до появления уравнения Дебая— Гюккеля Льюис ввел понятие ионной силы и показал, что в очень разбавленных растворах логарифм коэффициента активности сильного электролита обычно является линейной функцией корня квадратного из величины ионной силы. Триумф теории Дебая — Гюккеля состоял в том, что она не только подтвердила эту линейную зависимость без специальных предположений, но и позволила точно предсказать наклон соответствующей прямой. Таким образом, понятие ионной силы, первоначально обозначавшее эмпирическую величину, получило достаточно обоснованное теоретическое истолкование. [c.22]

    В заключение отметим, что до сих пор механизм отравления катализатора неизвестен. Теория ВПП позволяет удовлетворительно описать экспериментальные результаты по крекингу в широком диапазоне условий проведения процесса. В то же время отсутствуют доказательства того, что деактивация катализатора связана с чем либо иным, кроме простого химического подавления отдельных активных центров. Отсутствуют также доказательства избирательного отравления центров различной силы, хотя имеются некоторые данные о том, что деактивация центров Бренстеда и Льюиса происходит по разным механизмам. Для выяснения указанных вопросов необходим более тонкий анализ. [c.74]

    Последующие работы показали, что произведение растворимости ионов не всегда остается постоянным, как этого требует теория. По правилу Нернста электролиты с одноименным ионом должны понижать растворимость малорастворимой соли, а электролиты, не имеющие однои.менного иона, не должны оказывать никакого влияния на эту величину. Многочисленные исследования [2—7], из которых мы приводим незначительную часть, показали, что таких простых случаев мало. Электролиты, не имеющие общего иона, обычно повышают растворимость малорастворимой соли, и в большинстве случаев растворимость зависит от концентрации раствора, причем кривая растворимости малорастворимой соли иногда имеет максимум или минимум [3—6]. С точки зрения теории Нернста, эти явления были совершенно не понятны. Положение изменилось с появлением термодинамики реальных систем Льюиса [8—10]. По Льюису постоянна не растворимость насыщающей раствор соли, а ее активность. Растворимость же и коэффициент активности зависят от концентрации раствора или, вернее, от его ионной силы [c.55]

    Важную роль в развитии элек рохимии сыграли также теория электролитической диссоциации Аррениуса (1887), теория активностей Льюиса и электростатическая теория Дебая и Хюккеля. [c.360]

    В химической термодинамике видное место занимает созданная Льюисом теория активности. Льюис, ввел в термодинамику две новые величины, подлежаш,ие экспериментальному и теоретическому изучению, а именно две такие величины / и а, которые, будучи употребляемы вместо давления р и концентрации с, позволяют обобш,ить формулы термодинамики идеальных газов (растворов) на любые реальные системы. [c.9]

    Аномальное поведение солей в растворах сильных электролитов пытались объяснить химическими, а также физическими явлениями. Это нарушение принщпта постоянства произведения растворимости ускорн.10 создание формальной теории активности Льюисом [26—28], которая, не раскрывая природу явления, позволяла решать практические и теоретические задачи. [c.94]

    Активность представляет собой ту эффективную концентрацию, которой должна бы была обладать реальная система, чтобы производить такие же действия, как и идеальная. Теория активности пытается сохранить обычные формулировки термодинамических соотношений при помощи обычного вида термодинамр ческр х потенциалов, вводя понятие об эффективной активности, зависящей от окружающих условий и концентраций. Однако чистая термодинамика бессильна и в этом случае определить вид функциональной зависимости 7 = 7(с). К этой цели можно идти двумя путями во-первых, можно экспериментально изучать законы, которым подчиняются изменения коэффициента активности при изменении концентрации, температуры и т. д. Подстановка этих эмпирических зависимостей в термодинамические формулы дает возможность вывести ряд новых соотношений и таким образом построить более или менее полную термодинамику реальных систем данного типа. Второй путь заключается в попытке раскрытия физического смысла коэффициентов активности при помощи методов, статистР ческой механики, путем нахождения закономерностей, которым подчиняется эта величина. Первым путем шли Льюис, Бренстед, их ученики и последователи. Их работы показали, что теория активности дает чрезвычайно удобное средство для обработки экспериментальных данных и нахождения новых эмпирическрж закономерностей. Полученные ими результаты показывают также, что коэффициент активности является реальной физической величиной, значение которой не зависит от метода определения и представляет собой функцию (в случае разбавленных растворов очень простую) температуры и концентрации. [c.157]


    В 1910—1920 гг. Лэнгмюр и другие исследователи разработали модели адсорбционных центров, основанные на кристаллографических данных об атомах на поверхностях. Ненасыщенной связи такого центра приписывали электростатический или ковалентный характер ( свободные связи ) в зависимости от природы твердого тела, что делало возможной интерпретацию ее в рамках октетной теории Льюиса —Косселя. Примерно в 1923 г, было высказано предположение, что кристаллические решетки могут быть дефектными, и постулировано наличие в кристаллах трещин Гриффита и внедренных атомов Френкеля, Деление твердых катализаторов на ионные, ковалентные и металлические все еще оставалось полезным, однако возникла необходимость различать свойства хороших и плохих поверхностей, В 1926— 1927 гг, такое различие (в виде различия между свойствами однородных и неоднородных поверхностей) было уже явно выражено в двух эвристических гипотезах, основанных на исследовании хемосорбции и катализа — мультиплетной теории Баландина [1] и теории активных центров Тейлора [2]. [c.39]

    Единственным слабым пунктом теории перекисей является то обстоятельство, что ненасыщенные углеводороды обладают значительно меньшей склонностью к детонации, чем парафины однако они имеют ярко выраженную склонность образовывать перекиси. Это видимое противоречие приходится объяснять тем, что степень детонации может обусловливаться не столько количеством, сколько характером перекисерг, а также дополнять теорию перекисей —теорией свободного водорода, выдвинутой Льюисом. Последний считает первичным процессом окисления парафинов дегидрогенизацию их, в результате чего образуются ненасыщенные углеводороды и водород. Последний и является основной причиной возникновения детонации в двигателе. Можно думать, что получающийся в результате дегидрогенизации водород находится в атомарном состоянии, т. е. что процесс распада парафиновых углеводородов сопровождается химической активацией молекул водорода. Как известно, атомарный водород может мгновенно соединяться с кислородом, причем это соединение связано с выделением огромного количества энергии. Таким образом, получающееся соедпнение можно рассматривать как активный центр, который может активировать молекулы горюч й смеси и тем самым сильно способствовать ускорению химической реакцпи. Подтверждением теории свободного водорода (как дополнительного фактора-детонации) и является хорошо известная большая склонность к детонации нормальных углеводородов парафинового ряда по сравнению с нормальными углеводородами олефинового ряда. Можно также полагать, что в случае непосредственно окнсляел1ых ненредельных углеводородов первично получающиеся нестойкие перекиси успевают превратиться в стойкие перекиси, тогда как в случае нос родстве и но окисляемых предельных углеводородов этот процесс завершиться не успевает. Это том более важно, что именно нестойкие формы перекисей глав- [c.356]

    Теория образования гомогенных активных центров в струе пара была изучена Амелиным и Беляковым [17], Хигучи и О Конски [368] и Левиным и Фридлендером [506]. Последние разработали теорию перемешивания в струе пара для систем, в которых число Льюиса (Le) (соотношение чисел Шмидта и Прандтля Le= S /Pr) относится к пару это число аппроксимирует паровоздушную систему. На основании выводов Левина и Фридлендера [506] могут быть определены условия пересыщения, в которых образуются гомогенные активные центры. Проведя эксперименты с использованием турбулентной струи паров глицерина, эти исследователи пришли к заключению, что для наблюдения данного эффекта необходимо обеспечить очень высокое пересыщение среды при скоростном процессе перемешивания. Присутствие ионов газа повышает концентрацию капель в струе паров на несколько порядков. [c.416]

    Поэтому дальнейшее развитие теории растворов пошло по другому пути. Форма уравнений, описывающих свойства идеальных растворов, была сохранена неизменной, но применимость этих уравнений к реальным системам достигалась тем, что в них вместо обычных величин, характеризующих системы (давления, концентрации), стали использовать величины, заимствованные из опыта. В настояш,ее время все термодинамические расчеты свойств растворов сильных электролитов строятся на использовании введенной Льюисом величины активности электролита, или активности его ионов. Активность определяется как величина, подстановка которой вместо концентрации в термодинамические уравнения, действительные для простейших (идеальных) систем, делает их применимыми к рассматриваемьш растворам. [c.116]

    Согласно теории Льюиса — Рэпдела, коэффициент активности любого иона один и тот же во всех разбавленных растворах, имеющих одинаковую ионную силу. [c.122]

    Активность термодинамическая (97) определяет химический потенциал данного компонента в растворе с помощью такого же уравнения, как и в теории идеальных растворов, но с заменой концентраций компонентов на их активности. Введена Льюисом, предложившим различные методы ее А спери-ментального определения. [c.307]

    Теория и опыт показывают, что коэффициенты активности ионов зависят от ионной силы раствора. Г. Н. Льюис и М. Рендалл установили эмпирически так называемое правило иошюй силы, носящее их имя. В соответствии с этим правилом ионной силы Льюиса и Рендалла в разбавленном растворе с данной ионной силой все ионы с одинаковым по абсолютной величине зарядом имеют один и тот же коэффициент активности. Это правило справедливо для растворов с невысокой концентрацией, не превышающей 0,01—0,02 моль/л. [c.62]

    Рассмотрение известных катализаторов и различных схем инициирования предопределяет целесообразность общего подхода к инициированию процессов электрофильной полимеризации с позиций теории кислотно-основно-го взаимодействия. Инициириующие свойства электрофильных катализаторов определяются мерой кислотных свойств, так как катионная полимеризация представляет собой своеобразную последовательность актов, протекающих по принципу нейтрализации кислоты (активный центр) основанием (мономер) [30,31]. Подобные взаимодействия можно классифицировать как частный случай кислотно-основных взаимодействий в неводных средах, причем конкретная природа кислоты (Льюиса, Бренстеда или их комбинация) и основания (мономер, электронодонорный растворитель) определяют специфику процессов. [c.41]

    Важность систематического изучения коэффициентов активности электролитов была впервые отмечена Льюисом [1]. Применяя для экстраполя- ции эмпирическую функцию, содержащую две постоянные, Льюис и Лингарт [2], а также Льюис и Рендалл [3] сделали первую попытку вычислить коэффициенты активности из имевшихся опытных данных. Аналогичная попытка была предпринята Харнедом [4, 9а], который воспользовался д.ля вычисления эмпирическим уравнением с тремя эмпирическими постоянными. Эти исследования были сделаны до того, как стал известен предельный закон теории Дебая и Гюккеля при экстраполяции были допущены большие ошибки и коэффициенты активности были вычислены с точностью, не превышающей 0,01. [c.339]

    Элементы без жидкостного соединения, содержапхие смесь электролитов, были впервые применены Харнедом [7], который исследовал влияние растворов хлористого калия различной концентрации на коэффициент активности Ю,1 М раствора соляной кислоты. Лул1ис, Эссекс, Мичэм [8] и Чоу Минг [9] также исследовали такого рода элементы для того, чтобы измерить коэффициент активности соляной кислоты в растворах хлористого калия при обпхей ионной силе, равной 0,1 М. Один из выводов, сделанный Харнедом на основании этих измерений, состоял в том, что коэффициент активности, а также относительное парциальное молярное теплосодержание данного си-льного электролита в растворе другого электролита являются прежде всего функцией обш ей концентрации электролита или, как показали Льюис и Рендалл, обш ей ионной силы. Этот вывод находится в соответствии с основными уравнениями теории междуионного притяжения, поскольку в эти уравнения всегда входит Г /2 функция концентраций всех ионов и их валентностей. После этих работ и возникновения теории междуионного притяжения были выполнены весьма обширные исследования электродвижущих сил элементов со смесями электролитов. Результаты [c.418]

    Несмотря на значительные успехи в области изучения структуры воды и водных растворов, предложенные теории гидратации ионов дают пока лишь качественное описание наблюдаемых явлений. Количественные характеристики растворов даются на основе классической теории электролитической диссоциации. В связи с этим для сильных электролитов (к ним относятся все растворенные в природных водах соли) при расчете констант диссоциации, равновесия, гидролиза и др. используют активности или умножают аналитически определяемые концентрации ионов на соответствующие коэффициенты активности. Согласно эмпирической теории Льюиса и Рендалла при концентрациях электролитов т 0,02 моль/л, что близко к солевому составу пресных вод, средний коэффициент активности диссоциирующего на ионы вещества у[ является функцией ионной силы раствора р., которая суммарно оценивает влияние силовых полей ионов на различные свойства растворов. Как известно, ионная сила водных растворов и коэффициенты активности определяются из выражений (г — валентность ионов)  [c.83]

    В первом опыте построения теории распространения иламени без применения температуры воспламенения, в работе Льюиса и Эльбе (1147], см. также (37, стр. 214]), пламя рассматривалось как непрерывное ускорение реакции. Тепловой поток из зопы реакции в свежий газ осуществляется как теплопроводностью, так и диффузионным перемешиванием свежего газа с продуктами сгорания. При этом в качестве рабочей гипотезы было принято, что ...сумма термической и химической энергии на единицу массы остается постоянной в любом элементарном слое между свежим и сгоревшим газом (там же). Применительно к выбранному конкретному примеру, нладшни распада озона, предполагалось учесть и роль диффузии активных цептров — атомов О. Одна) о это не было реализо- [c.178]

    Льюис установил, что величина, названная им ионной силой, является главным фактором, определяющим величину коэффициентов активности в водных растворах. Теория Брёнстеда показывает, что вторичные специфические солевые эффекты при постоянной ионной силе оказываются близкими. [c.59]

    Множитель в скобках называют кинетическим коэффициентом активности. Эта величина, как и коэффициенты у, становится равной единице при бесконечном разбавлении. Основной постулат теории, предложенной Харндом и Льюисом [54, 70], состоит в том, что скорость распада комплекса С с образованием продукта реакции Р пропорциональна концентрации комплекса, однако этот процесс не настолько быстрый, чтобы нарушалось равновесие. Тогда [c.154]

    С развитием электронной теории валентности эти идеи о валентном сродстве были оставлены. В 1920 г. Г. Н. Льюис указал, что поскольку все стабильные молекулы и ионы имеют четное число электронов, то нормальная, неионкая валентная или ковалентная связь, образуется, очевидно, путем обобществления пары электронов между двумя атомными ядрами. Неспаренные или нечетные электроны имеются в активных свободных атомах, как, например, в натрии или иоде, и, как будет [c.12]

    Закон о зависимости коэффициента активности от ионной силы был эмпириче- ски найден в 1921 г. Льюисом и Ренделлом. Позднее на основании теории Дебая были получены подтверждения этого закона. [c.95]

    Большое влияние на развитие теории растворов имели работы Г. И.. Льюиса, который ввел в термодинамику понятие об активности (1907 г.) и тем самым 311йчителько облегчил анализ явлений в неиаеальных растворах. Существенная ннфор% ация была также получена при изучении зависимостей электропроводности (разд. 10.4) и коэффициентов активностей (разд. 10.7) от концентрации растворов. [c.166]

    Один из создателей теории соударений В. Мак Льюис [364] вычислил в 1918 г. константы скорости газовых реакций (в 1919—1920 гг. его вычисления были подтверждены К. Герцфельдом, И. Христиансеном и М. Поляни) на основании кинетической теории газов. Сущность теории соударений состоит в том, что число молекул, реагирующих в 1 см за 1 сек., принимается равным числу активных столкновений в 1 см за 1 сек. Тогда предэксноненци-альный множитель уравнения Аррениуса интерпретируется в свете этой теории как частота (число) столкновений молекул в 1 см в 1 сек. и определяется по формуле, в которую входят средние радиусы молекул и их массы. Найдя радиусы молекул из измерений вязкости газов, а величину энергии активации Е из графика температурной зависимости константы скорости, можно определить константу скорости к по формуле [c.157]


Смотреть страницы где упоминается термин Теория активностей Льюиса: [c.281]    [c.281]    [c.82]    [c.39]    [c.45]    [c.115]    [c.857]    [c.73]    [c.149]    [c.76]    [c.199]    [c.176]    [c.227]   
Смотреть главы в:

Основы физической химии -> Теория активностей Льюиса




ПОИСК





Смотрите так же термины и статьи:

Активные теория

Льюис

Льюис активность

Теория Льюиса



© 2025 chem21.info Реклама на сайте