Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура плавления пределы

    Углеводороды нефти и газового конденсата характеризуются по температуре кипения отдельных фракций, по групповому составу нафтеновых, ароматических и парафиновых углеводородов, по содержанию сернистых соединений, по количеству силикагелевых смол, асфальтенов и парафинов в составе нефти или конденсата, а также по плотности, температуре плавления, пределам взрывае-мости и другим параметрам, характерным для обеспечения квалифицированной и безопасной переработки. [c.24]


    Температура плавления (предел 2°) [c.281]

    Кроме того, степень пригодности камня для той или иной цели определяется и рядом других показателей, из которых главными являются следующие химический состав, объемный вес, температура плавления, предел прочности при сжатии, растяжении, изгибе и пр. [c.52]

    Темно-желтые пикраты плавились ири 85—87°С, цвет пикратов и пределы температуры плавления характерны для пикратов 1- и 2-этилиафталина. Пикраты оранжевого цвета [c.43]

    Температура начала кристаллизации — максимальная температура, при которой в топливе невооруженным глазом обнаруживаются кристаллы. Эта температура характеризует в основном температуру фильтрования. Температура кристал -лизации зависит от углеводородного состава топлив и, в первую очередь, от их температуры плавления. С увеличением молекулярной массы температура плавления повышается. Однако температура плавления при одной и той же молекулярной массе в зависимости от строения углеводорода колеблется в очень широких пределах. Углеводороды с разветвленным строением имеют, как правило, более низкую температуру начала кристаллизации. Наиболее высокой температурой начала кристаллизации отличаются парафиновые углеводороды, затем ароматические и нафтеновые. [c.31]

    Диапазон температур, при которых можно применять расплавы для нагрева, т. е. диапазон температур, в котором при повыщении температуры не наступает разложения, лежит в пределах для расплава I 200—450° С, для расплава II 200—540° С. При нагреве сверх указанных температур соли постепенно разлагаются, и температура плавления расплава при этом повышается. Температуры 21 32а [c.323]

    Из данных табл. 2 видно, что вязкость основных парафиново-дистиллятных фракций нефтей при 50 " находится в пределах 7,7— 12,6 сст. Средняя температура плавления содержащегося в этих фракциях парафина лежит в пределах 45—50°. Температура насыщения фракций парафином колеблется от 16 до 38°. Темпе- [c.26]

    Это обстоятельство пе всегда еще учитывается при решении вопросов о выработке парафинов, предназначенных для тех или иных специальных целей, для которых имеет значение их химический состав. В таких случаях для парафина необходимо нормировать пределы температур не только плавления, но и кипения, имея при этом в виду, что чем выше при заданном фракционном составе нефтяного парафина будет его температура плавления, тем больше будет содержаться в этом парафине алканов нормального строения. [c.58]

    Метод определения температуры каплепадения позволяет ориентировочно установить температуру плавления смазки и установить, таким образом, приближенно верхний температурный предел ее работоспособности. Этим методом оцениваются возможности применения смазки при повышенных температурах. Температура каплепадения смазки зависит от характера загустителя. Температура каплепадения нормируется почти для всех консистентных смазок и определяется по ГОСТ 6793—53 в специально предназначенном для этой цели приборе. [c.226]


    Состав, номенклатура и свойства нефтяных парафинов тесно связаны с процессами их производства и с источниками сырья. Мягким парафином называется сырой парафин, получаемый на фильтрпрессах при фильтрации охлажденных дистиллятов сравнительно маловязких смазочных масел при выпотевании парафина удаляются масла и из низкоплавкого парафина в конце концов получается чешуйчатый парафин. Последний содержит обычно менее 3 % масла, и после дальнейшей очистки получается товарный парафин, имеющий обычно температуру плавления в пределах 48,9—60,0° при выделении парафина из специального сырья его температура плавления выше 72,8°. [c.40]

    Пентан не образует комплекса в нормальных условиях, но комплекс можно получить при низкой температуре под давлением. Гексан является первым чл( ном гомологического ряда м-алканов, который образует комплекс при комнатной температуре и атмосферном давлении. В аналогичных условиях олефины дают комплексы, начиная лишь с 1-октена. Для верхнего предела длины цепи ограничений не имеется, кроме тех препятствий, которые могут возникнуть в связи с растворимостью углеводородов. При повышении температуры необходимо учитывать растворимость углеводородов и допустимую скорость реакции, так как прочность решетки мочевины уменьшается и при дальнейшем нагревании при 132,7 достигается температура плавления. [c.204]

    Из сказанного видно, что в нерегулярно разветвленных полимерах, как, например, промышленный полиэтилен, такие свойства, как температура плавления, температура размягчения при низких нагрузках, модуль упругости при малых нагрузках, предел текучести, твердость поверхности, зависят главным образом от кристалличности. [c.170]

    Помимо рассмотренных выше твердых парафинов, в Советском Союзе осваивается производство жидких парафинов с температурой плавления 24—26° С и пределами выкипания 240—350° С. [c.143]

    Джонсон недавно провел измерения показателей преломления для установления точек перехода [51]. В то время как для ряда парафиновых углеводородов существует несколько переходов, в пределах С25—С38, как показал Фонтана, имеется только один переход, связанный с заметным изменением энергии,— между температурой плавления и комнатной. [c.517]

    Из легких парафиновых дистиллятов получают парафины различных степеней чистоты температуры плавления лежат в пределах 50—60° С, содержание масла от 0,02—0,03%. [c.529]

    В отличие от стеклования, которое в пределах доступного для наблюдения времени не является фазовым переходом, кристаллизация представляет собой фазовый переход I рода, признаками которого являются скачкообразные изменения удельного объема, энтальпии и энтропии системы. Термодинамической константой этого перехода является равновесная температура плавления кристаллов Гпл. Она представляет собой верхний температурный предел. выше которого существование кристаллической фазы невозможно. Кристаллизация развивается при Т <Тпл и состоит из двух элементарных процессов — образования зародышей, а также роста и формирования кристаллитов. Первичными кристаллическими образованиями в нерастянутых полимерах являются ламели, представляющие сложенные на себя молекулярные цепи. Из них затем формируются вторичные поликристаллические образования — сферолиты, дендриты и др. [c.46]

    ЯМР [16], электронно-микроскопического [17]. Установлено, что даже незначительная доля структурных неоднородностей в каучуке оказывает большое влияние на скорость и степень кристаллизации полимера. Полупериод кристаллизации возрастает почти на порядок с уменьшением содержания ис-1,4-звеньев от 98 до 95%, а температура плавления кристаллов изменяется пропорционально изменению содержания 1,4-звеньев в этих пределах [14]. Скорость образования кристаллов в полимерах, содержащих 10% гранс-звеньев, на три порядка меньше величины, характерной для полиизопрена, состоящего исключительно из цис- [c.204]

    Проинтегрировав уравнение (VII, 16в) в пределах от температуры плавления второго компонента (а=1) до некоторой температуры Т<Го и текущего значения активности a , получаем  [c.230]

    Для грозненского парафина в пределах 41—60°. Чем выше температура плавления парафина, тем он дороже ценится. [c.80]

    Температура плавления некоторых углеводородов ниже температуры кипения жидкого кислорода (пропана — 84° К, пропилена—88° К и т.д.). При превышении пределов растворимости такие вещества находятся в жидком кислороде в виде капель, которые имеют тенденцию [c.101]

    Переходные металлы характеризуются твердостью и высокими температурами плавления и кипения. С повышением порядкового номера в пределах периода размеры атомов обнаруживают общую тенденцию к уменьшению, обусловленную последовательным увеличением заряда ядра. [c.437]


Рис. 14-19. Температуры плавления (а) и кипения (б) бинарных соединений различных элементов с водородом. В пределах каждой группы периодической системы температуры плавления и кипения закономерно возрастают Рис. 14-19. <a href="/info/6380">Температуры плавления</a> (а) и кипения (б) <a href="/info/2128">бинарных соединений</a> <a href="/info/570821">различных элементов</a> с водородом. В пределах каждой <a href="/info/70499">группы периодической системы</a> <a href="/info/6380">температуры плавления</a> и <a href="/info/1817368">кипения закономерно</a> возрастают
    Температурный диапазон переработки полимерных материалов лежит в пределах между температурами плавления и деструкции /д (табл. 12.3). Для резиновых смесей верхний предел температуры переработки ограничивается температурой вулканизации. [c.338]

    Пределы кипения 110 ИТК °С Выход на нефть депарафинированной фракции вес. % рГ Содержание серы % Вязкость, ссг Температура застывания С Характеристика газа Температура плавления С [c.74]

    В масляных дистиллятах, выкипающих в пределах 350—450° С, содержится около 5% серы и 9—13% парафина с температурой плавления 43—56°С. Эти дистилляты характеризуются очень низким содержанием метано-нафтеновых углеводородов около 30%, остальное количество приходится на ароматические углеводороды и сероорганические соединения (табл. 129). [c.99]

    Физические и физико-химические свойства нафтеновых углеводородов близки к свойствам углеводородов парафинового ряда как нормального, так и изостроения, что обусловлено наличием в молекулах нафтенов боковых цепей разных длины, структуры и степени разветвленности. Нафтеновые углеводороды отличаются от парафиновых, выкипающих в тех же пределах, большими плот-нос тью, вязкостью, показателем преломления, меньшей температурой плавления и худшей вязкостно-температурной характеристикой. Нафтеновые и парафиновые углеводороды имеют практически одинаковые значения удельной дисперсии и молекулярной [c.13]

    Высокая степень диссоциации кристаллов, в частности кристалла Na l, при температуре, близкой и температуре плавления, подтверждается также измерениями, которые мы проделали для определения предела упругости кристаллов. Когда температура приближается к температуре плавления, предел упругости гетерополярных кристаллов (а также металлов) становится равным нулю, и я думаю, что это указывает на большую легкость перемещения внутри кристалла для целых групп, что в свою очередь заставляет предполагать существование высокой диссоциации. Если считать, что при температуре плавления степень диссоциации становится равной нескольким десятым, и вычислить подвижность, пользуясь значением тока, мы получим для величины подвижности число, которое хорошо согласуется со скоростью прохождения посторонних ионов. Если сделать такое предположение, то внезапное изменение проводимости во время плавления должно быть обязано своим происхождением не изменению степени диссоциации, а лишь внезапному изменению подвижности. [c.226]

    Платина — мягкий металл с высокой температурой плавления. Предел прочности при растяжении составляет 15 кгс1мм при холодной деформации происходит упрочнение до 34 кгс1мм . В соответствии с этим удлинение холоднотянутой платины уменьшается приблизительно от 30 до 2%. Благодаря хорошим механическим свойствам платины, из нее можно изготовлять тонкостенные изделия. В тех случаях, когда требуется более высокая механическая прочность, можно применять сплавы платины с другими металлами платиновой группы — иридием, родием, рутением. [c.498]

    Получение полиэтилена нри высоком давлении. Полиэтилен впервые был получен при высоком давлении английской фирмой Империал Кемикалс Индастри [59]. Способ получения заключается примерно в том, что этилен при температуре 120—130° и давлении 1000— 20ОО ат полимеризуется в присутствии небольших количеств чистого кислорода. Молекулярный вес полимернзата получается тем больше, чем ниже температура полимеризации. Практически, однако, оптимальной рабочей температурой признана 120—130°, потому что уже при этих условиях температура плавления нолимеризата составляет около 110°. Полимеризация проводится при полном отсутствии растворителя. Содержание кислорода лежит практически в пределах 0,05—0,1%, считая на этилен. Время пребывания этилена в установке составляет 2—6 мин. при 10—15%-ном превращении этилена за один проход через печь. Схема работы при получении полиэтилена представлена на рис. 137. [c.222]

    В технических микрокристаллических парафинах, выделенных из более высококипящих фракций, чем парафиновые дистилляты, обнаружено преобладание структур нафтенового и изоалка-нового характера. Они состоят главным образом из углеводородов, содержащих 34—60 углеродных атомов в молекуле, и имеют температуру плавления в пределах 60—90° [53]. О высокомолекулярных парафинах, получаемых синтез-ом Фишера—Тропша, см. стр. 128. [c.54]

    Оранжево-желтые игольчатые пикраты плавились при 130—132°С. Эти пределы температуры плавления характерны для пикратов 1- и 2-метилпафталинов. [c.43]

    Метилпирролидон — горючая бесцветная жидкость со слабым специфическим запахом относительная плотность по воде 0,28 температура плавления —24°С, кипения 205°С, самовоснламене ния 255 °С, вспышки 85 °С. С воздухом и кислородом пары обра зуют взрывоопасные смеси. Пределы взрываемости смеси с воз духом составляют 2,3—10,2% (об.) пределы воспламенения ниж ний 86 °С, верхний 179 °С. [c.29]

    Нижний же рафинат, имея более высокие пределы кипения, содержит более высокоплавкие парафины с температурой плавления на уровне 56—60°, обладающие более мелкой кристаллической структурой. Депарафинизация этого рафината более затруднительна, чем среднего рафината. И еще труднее протекает обез-масливание полученного гача. По этой причине для нижнего дистиллята еще более, чем для среднего, имеет значение четкость фракционировки его от более высококипящих фракций, влияющих на его микрокристаллическую структуру. При нечеткой фракционировке этого продукта и при растянутости его к. к. выше 500°, а иногда и выше 525° (как это иной раз наблюдается на некоторых восточных заводах) нижний дистиллят становится настолько загрязненным мелкокристаллическими высокомолекулярными компонентами, что его кристаллическая структура приближается к структуре остаточных рафинатов, однако без свойственного остаточным продуктам агрегирования кристаллических образований, значительно облегчающих фильтрацию последних. Поэтому наблюдаются случаи, когда рафинаты нижних дистиллятов поддаются депарафинизации значительно труднее, чем рафинаты остаточных продуктов. Радикальным способом улучшения депарафинизации является повышение четкости отфракционировки концевых фракций нижнего дистиллята. [c.30]

    Основную массу и-алканов, содержапщхся в дистиллятах нефтяных масел, составляют углеводороды от с температурой плавления 28° и температурой кипения 318°, примерно до Сщ с температурой плавления 74,6° и температурой кипения 498°, а в отдельных случаях и до С4ц с температурой плавления 81° и температурой кипения 536°, В парафиновые дистилляты, кипящие обычно в пределах от 300—325 до 450—475°, могут входить к-алканы от Сх, и Сх с температурами плавления 21 и 28° до С30 и С32 с температурами плавления 64,7 и 69,6° и температурами кипения 456 и 476°. [c.41]

    Наконец, из изложенных выше положений о связи между химической природой твердых углеводородов нефти и их физикохимическими свойствами следует, что парафины с равной температурой плавления, но выделенные из сырья различного фракционного состава не являются равноценными по химической природе. Так, технический парафин с температурой плавления 50—52°, полученный из легкого дистиллята, выкипающего в пределах 350— 420°, может представлять в основном смесь н-алканов примерно от С21 до С27 с относительно небольшой примесью циклических и изомерных углеводородов. Но если парафин с той же температурой плавления 50—52° будет выделен тем или иным способом из более тяжелого сырья, например из дистиллята с пределами кипения 420—500° путем дробного осаждения, то такой парафин будет содержать высокий процент углеводородов циклических и изостроения. Точно так же и легкоплавкие парафины, получаемые для синтеза высокомолекулярных жирных спиртов, из концевых фракций дизельных топлив и состоящие в основном из н-алканов, совершенно пе будут идентичны легкош1авким парафинам, которые могут быть выделены из фильтратов парафинового производства при их дополнительной депарафинизации избирательными растворителями. [c.58]

    Для индивидуальных углеводородов температуры перехода из одной модификации в другую изучены только для м-алканов. Для изоалканов и циклических углеводородов данные по температурам перехода имеются только для некоторых главным образом низкомолекулярпых представителей этих углеводородов. Эти значения температур перехода для -алканов приведены в табл. 5. Из данных табл. 5 видно, что для твердых -алканов разность между температурами плавления и температурой перехода составляет примерно 3—12° при некоторой тенденции этой разности к уменьшению по мере повышения температуры плавления -алканов, хотя строгой закономерности в этом и не наблюдается. Для технических же парафинов (средняя температура плавления порядка 50°) разница между температурой плавления и температурой перехода составляет 15—20° и существенно уменьшается с повышением температуры плавления. При этом для парафинов широкого фракционного состава отмечается более высокая величина этой разности, чем для узких его фракций. Для большинства товарных парафинов, вырабатываемых из парафиновых дистиллятов, температура перехода из мягкой волокнистой аллотропной формы в хрупкую пластинчатую лежит в пределах 30—33°. Здесь следует отметить, что температура перехода для технических парафинов и зависимость ее от температуры плавления, молекулярного веса, фракционного состава, химической природы остается еще весьма мало изученной, несмотря па большую важность этого вопроса. [c.60]

    Твердый парафин добывается также и из других источников. Так, парафин, подобный нефтяному, получается из битуминозных сланцев или перегонкой бурого угля при низкой температуре. Небольшие количества его, не имеющие промышленного значения, содержатся также в некоторых растительных восках, эфирных маслах и других растительных продуктах. В хорошо известном процессе Фишера-Тропша, применяемом в Германии для производства синтетического бензина, также получается твердый хрупкий парафин с температурой плавления, изменяющейся в широких пределах, но болео высоксплавкий и более высокомолекулярный, чем парафин из нефти. [c.40]

    Церезины и товарные микрокристаллические парафины вообще обладают более высокими температурой плавления, молекулярным весом и пределами кипения, чем обычные товарные парафины. Это определяется пределами перегонки парафиновых дистиллятов, из которых выделяется парафин на фильтрпрессе и при выпотевании. Верхний предел выкипания парафиновых дистиллятов из пенсильванской нефти соответствует температуре около 285° при давлении 10 мм рт. ст. и для некоторых тексасских нефтей около 313°. [c.41]

    В физических свойствах пзтролатума и товарного микрокристаллического парафина наблюдается большое различие, однако это различие зависит от свойств исходной нефти, из которой они получаются, и от способа их получения. Некоторые нефти, а также отстой со дна нефтяных резернуа-ров могут служить хорошим сырьем для производства микрокристаллического парафина. Температура плавления парафинов изменяется в широких пределах — от сравнительно мягкого пластичного и плавящегося около 60°, до твердого продукта, плавящегося приблизительно при 93°, Углеводороды, присутствующие в этих парафинах, имеют состав в пределах от С34 до Сбо [21]. [c.43]

    Качество стали оценивается рядом структурнонечувствительных и структурно-чувствительных механических характеристик, устанавливаемых по результатам испытаний образцов на растяжение. К первой группе свойств относятся модули упругости Е и коэффициент Пуассона а. Величина Е характеризует жесткость (сопротивление упругим деформациям) стали и в первом приближении зависит от температуры плавления Тпл- Легирование и термическая обработка практически не изменяют величину Е. Поэтому эту характеристику можно рассматривать как структурно-нечувствительную. Коэффициент Пуассона р отражает неравнозначность продольных и поперечных деформаций образца при натяжении. При упругих деформациях л = 0,3. Условие постоянства объема стали при пластическом деформировании требует, чтобы л = 0,5. При определенных значениях относительной деформации 8 > 8т (или 80,2, 8о,з). Зависимость ст(е) отклоняется от прямолинейного закона (Гука). Предел текучести ат(ао,2 или ао,5) связан с величиной 8т по закону Гука ат = 8тЕ. Дальнейшее увеличение деформаций способствует увеличению напряжений. [c.88]

    Дополнительным критерием чистоты вещества может служить также температурный интервал, в ко-тором происходит плавление. Так, если.чистые продукты полностью расплавляются в пределах 0,5—1 °С, то сильно загрязненные веш,ества не. Ш4ек>т рез- кой температуры плавления и при нагревании прев-, ращаются в жидкость постепенно, в пределах нескольких градусов. Однако это правило справедливо не всегда, поэтому не следует делать заключения о качестве продукта только на основании температур ного интервала плавления. [c.181]

    Термометр Бекмана, устаноиленный по температуре плавления нафталина, примерно так, чтобш ртуть находилась в пределах 1,5—3 °С по шкале термометра. [c.267]

    Чем выше температура плавления твердых углеводородов, тем выше температура растворения их в нефтяных фракциях, из которых они выделены [2, с. 72] (рис. 3). Растворимость твердых углеводородов в углеводородных растворителях зависит от молекулярной массы последних [3], причем эта зависимость экс1 ре-мальна (рис. 4). Растворяющая способность сжиженных углево-дО родных газов уменьшается три переходе от бутана к этану. Была исследована [3] растворимость в сжиженном пропане твердых углеводородов, выделенных из 50-градусных фракций грозненской нефти, выкипающих в пределах 300— О С (рис. 5). Результаты этого нсследования иллюстрируют влияние температуры плавления, а следовательно, молекулярной массы твердых углеводородов на их растворимость в неполярном растворителе. В области низких температур сжиженный пропан практически не растворяет твердые углеводороды, что позволяет [c.46]


Смотреть страницы где упоминается термин Температура плавления пределы: [c.420]    [c.49]    [c.26]    [c.43]    [c.43]    [c.429]   
Волокна из синтетических полимеров (1957) -- [ c.278 , c.279 ]




ПОИСК





Смотрите так же термины и статьи:

Предел температура

Температура плавления



© 2025 chem21.info Реклама на сайте