Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Установки углеводородов газообразны

    Углеводородный газ —состоит в основном из пропана и бутана. Пропан-бутановая фракция используется как сырье газофракционирующей установки для выделения из нее индивидуальных углеводородов, получения бытового топлива или компонента автобензина. В зависимости от технологического режима первичной перегонки нефти пропан-бутановая. фракция может получаться в сжиженном или в газообразном состоянии. [c.150]


    Оценка окислительной активности катализаторов при работе с такими многокомпонентными видами сырья, которыми являются тяжелые нефтяные остатки, представляет достаточно сложную задачу. Поэтому для корректной оценки окислительной активности были выбраны газообразные продукты окисления (СО2, СО, 50,). В табл. 1.3 приведены характеристики газообразных продуктов, определенные в начальные моменты ОКК маз та на различных катализаторах, содержащих оксиды металлов. Основным продуктом окисления, присутствующим во всех газах, является СО2. Наличие в газах промышленной установки каталитического крекинга СО2 свидетельствует о том, что при промышленном каталитическом крекинге углеводороды сырья претерпевают превращения не только по традиционным карбоний-ионному и радикально-цепному механиз.мам, но и вступают в окислительновосстановительные реакции с образованием газообразных и жидких продуктов окисления. [c.19]

Рис. 65. Схема лабораторной установки для сульфохлорирования жидких и газообразных углеводородов. Рис. 65. <a href="/info/1582644">Схема лабораторной установки</a> для сульфохлорирования жидких и газообразных углеводородов.
    Пиролиз углеводородов, таких, как этан, бутан, бензин, керосин и другие нефтяные фракции, превратился в один из самых современных и экономичных методов получения олефинов, которые приобрели такое большое значение в промышленности органической химии [59]. Процесс производства газообразных олефинов на крупно-тоннажных пиролизных установках обходится дешевле, чем их выделение из нефтезаводских газов. [c.15]

    В модифицированном варианте процесса SR -H, схема которого приведена на рис. 3.2, за счет повышения давления до 14 МПа и увеличения времени пребывания угольной пасты в реакционной зоне в качестве главного целевого продукта получают жидкое топливо широкого фракционного состава [79]. Исходный уголь после измельчения и сушки смешивается с горячей угольной суспензией. Полученную пасту вместе с водородом пропускают через нагреватель с огневым обогревом и затем направляют в реактор. Требуемые температура и парциальное давление водорода поддерживаются подачей в несколько точек реактора холодного водорода. Продукты реакции вначале разделяются в газосепараторах. Выделенный из жидких продуктов газ, содержащий преимущественно (I ступень) водород и газообразные углеводороды с примесью сероводорода и диоксида углерода, после охлаждения до 38°С направляется в систему очистки от кислых газов. На криогенной установке выделяются газообразные углеводороды Сз—С4 и очищенный водород (он возвращается в процесс). Оставшаяся метановая фракция после метанирования содержащегося в ней оксида углерода подается в топливную сеть. Жидкие про- [c.75]


    Этим способом можно подвергать пиролизу как тяжелые нефтяные фракции, так и газообразные парафиновые углеводороды. Очень сильное коксообразование не имеет значения для этого процесса, так как корунд, применяемый в качестве теплоносителя, освобождается от кокса прямым нагреванием. Установка работает непрерывно. Труднейшей задачей в этом процессе является подача шариков в подогреватель, так как здесь они подаются не газлифтом, а при номощи элеватора. [c.61]

    Ароматические углеводороды приходится определять, когда используют светлые нефтепродукты в качестве сырья на установках получения газообразных олефинов пиролизом, а также на установках окисления бензинов и т. д. [c.56]

    Расход холода будет наименьшим при отборе продуктов разделения на установке в газообразном виде и, как указывалось выше (стр. 59), возрастает при отборе части их (например, тяжелых углеводородов) в жидком виде. Расход холода возрастает с понижением температуры, при которой отбираются продукты разделения. [c.69]

    Прямогонные бензины, полученные на различных установках, отличаются друг от друга содержанием растворенных газообразных компонентов — углеводородов от 4,57 до 11,57о (масс.), 2С1-4 и от 0,0044 до 0,0142% сероводорода, а также фракционным составом. Для стабилизации прямогонных бензинов давление в верху колонны принято равным 1,2 МПа, температура полной конденсации дистиллята 45 °С. Поскольку режим дебутанизации обеспечивает получение стабильного бензина, не требующего щелочной очистки, при расчетах принято, что загрязняющим компонентом дистиллята является изопентан, а остатка — и-бутан. [c.271]

    Ниже приводятся некоторые сведения о промышленных установках окисления газообразных парафиновых углеводородов.  [c.365]

    По количеству введенного в установку углеводорода, вступившего в реакцию водорода, полученных в результате гидрогенизации жидких и газообразных углеводородов составляли материальный баланс процесса. [c.124]

    От газов, содержащих ацетилен, необходимо предварительно его отделить чаш,е всего его отделяют селективным гидрированием в этилен. Таким путем ацетилен выделяется из газа почти количественно. Метан и водород можно отделять промывкой газовой смеси маслом, в котором растворяются углеводороды с двумя и большим числом углеродных атомов, метан и водород не абсорбируются маслом и удаляются из установки. Газообразные углеводороды выделяются [c.69]

    На рис. 64 приведена схема установки для сульфохлорирования газообразных парафиновых углеводородов в растворе четыреххлористого углерода, позволяющей вести эту реакцию в лабораторных условиях, как непрерывный процесс. [c.389]

Рис. 64. Схема установки для сульфохлоридов из газообразных углеводородов. Рис. 64. <a href="/info/13990">Схема установки</a> для сульфохлоридов из газообразных углеводородов.
    Процессы производства олефиновых и диолефиновых углеводородов путем каталитической дегидрогенизации впервые были широко использованы США во время второй мировой войны. Методы получения олефинов были разработаны за несколько лет до войны в результате интенсивной исследовательской работы в период от 1930 до 1940 гг. Однако в то время эти методы были малорентабельными. Кроме того, относительно небольшой спрос на газообразные олефины удовлетворялся производством их на установках каталитического крекинга. С начала войны спрос на олефины и диолефины как сырье для производства алкилированного бензина и синтетического каучука способствовал строительству многочисленных дегидрогенизационных установок. [c.189]

    Смесь газообразных и жидких углеводородов продуктов пиролиза обычно перерабатывается на этиленовых установках, в секции первичного и вторичного фракционирования. [c.229]

    Пиролиз углеводородного сырья позволяет получать газообразные олефины, в первую очередь низшие Со—Сз, ароматические и диеновые углеводороды. Ароматические и диеновые углеводороды вырабатывают также целевым способом на установках каталитического риформинга и дегидрирования. [c.154]

    Выходы газообразных углеводородов, полученных на установке термического риформинга тяжелых бензинов (при 605 °С), приведены ниже (в объемн.% от сырья)  [c.51]

    Установка позволяет вести хлорирование всех газообразных, а также и частично хлорированных углеводородов. Указанный процесс может проводиться н под давлением. [c.121]

    Эти установки, с одной стороны, очищают, стабилизуют жидкие продукты от растворенных в них газов и легких углеводородов с другой стороны, способствуют выделению газообразных и легких углеводородов в целях дальнейшего получения из них пропана и бутана для нефтехимии. [c.209]


    Атмосферная перегонка нефти на таких установках осуществляется в одной колонне. Предпочтительным сырьем для них являются нефти с относительно невысоким содержанием бензиновых фракций и. растворенных газообразных углеводородов. Пример установки такого типа — ЭЛОУ-АВТ-7 со вторичной перегонкой бензина, запроектированная ВНИПИНефть по технологическому регламенту БашНИИ НП. Установка предназначена для обессоливания и перегонки 6—7 млн. т в год смеси нефтей. На установке вырабатывается следующий ассортимент фракций С,—С4 — сжиженный газ С5 — 90 °С — компонент автомобильного бензина 90—140 °С — сырье каталитического риформинга для производства высокооктанового компонента автомобильного бензина 140—250 °С — авиационное турбинное топливо 250—320 °С — легкий компонент дизельного топлива для скоростных двигателей 320—380 °С — тяжелый компонент дизельного топлива для скоростных двигателей (подвергается гидроочистке) 380—530 °С — сырье каталитического крекинга гудрон — сырье висбрекинга, для производства битумов. [c.73]

    Для осуществления процесса используют водородсодержащий газ риформинга, очищенный водород пиролиза, технический водород. При свободных ресурсах водорода на предприятии процесс осуществляют с подпиткой свежего водорода без очистки рециркулирующего водородсодержащего газа. При этом затраты водорода в 2—3 раза превышают стехиометрические. При ограниченных ресурсах водорода часть рециркулирующего водорода очищают криогенным илн абсорбционным способом от газообразных углеводородов j—С4. При отсутствии водорода установку гидродеалкилирования комбинируют с установкой получения [c.276]

    Схема короткоцикловой адсорбционной установки для очистки водорода из нефтезаводских газов, содержащих наряду с углеводородами С —С4 и углеводороды Сд и выше, показана на рис. 21. На установке имеется три ряда аппаратов, в каждом из которых основной адсорбер 2 предназначен для поглощения газообразных углеводородов С —С4, а дополнительный (небольшой) адсорбер 1 — для поглощения паров углеводородов Сд и выше. Адсорбер 1 заполнен менее эффективным адсорбентом, но его применение предохраняет цеолиты, находящиеся в адсорбере 2. [c.52]

    При абсорбционном методе можно использовать более низкое давление и более высокие температуры. Газовая смесь под давлением в противотоке контактирует с поглотительным маслом, в котором растворяются все углеводороды, имеющие 2 и более атомов углерода. Метан и водород при этом не абсорбируются и выводятся с установки. Затем газообразные углеводороды выделяются из поглотительного масла и разделяются ректификацией, что после удаления водорода и метана не представляет значительных трудностей. Освобожденное от газообразных углеводородов поглотительное масло возвращается на установку. Выделение газов из поглотительного масла можно провести таким образом, что при этом уже будет иметь место разделение на фракции с определенным числом атомов углерода. Дальнейшее разделение на отдельные компоненты путем перегонки не представляет труда. Часто получаемая при фракционировании чистота уже достаточна для последующей переработки. Абсорбционный метод обладает большими достоинствами для концентрпрования газов с небольшим содержанием олефиновых углеводородов. [c.45]

    При переработке пропилена до тетрамеров на промышленных установках полимеризации газообразных олефиновых углеводородов до димеров (около 40 ООО тЫод октанового бензина) производительность установки в 5 раз меньше, а эксплуатационные расходы в 2,5 раза больше [44]. [c.401]

    На рис. 3. 9 приведена технологическая схема получения бедного концентрата. Воздух, охлажденный в регенераторах, поступает в колонну 1 высокого давления воздухоразделительного аппарата, где происходит предварительное разделение с получением азота и жидкости, обогащенной кислородом. Окончательное разделение воздуха на азот и кислород осуществляется в верхней колонне 2 низкого давления жидкий кислород, в котором концентрируются криптон и ксенон, стекает в нижнюю часть колонны 2, откуда выводится в основной 3 и выносной 4 конденсаторы. В конденсаторе 3 происходит полное испарение кислорода, который возвращается в колонну 2] в конденсаторе 4, куда направляется около половины произведенного кислорода, небольшое количество кислорода остается жидким, причем в жидкости концентрируются углеводороды. Поток из конденсатора 4 проходит через сепаратор 5, где отделяется жидкость, которая непрерывно выводится из установки через продувочную линию таким способом обеспечивается дополнительная очистка газа от примесей углеводородов. Газообразный кислород, содержащий криптон и ксенон, из колонны 2 и сепаратора 5 вводится в криптоновую колонну 6, где происходит ректификация смеси с получением в качестве нижнего продукта бедного криптонового концентрата, содержащего0,1—0,2% криптона и ксенона, и газообразного кислорода, который, направляется в регенераторы. Рабочее флегмовое чирло (т. е. отношение количеств стекающей жидкости и поднимающегося пара) в верхней части криптоновой колонны составляет 0,11—0,12. Флегма получается в конденсаторе, расположенном наверху криптоновой колонны 6 в межтрубное пространство конденсатора направляется жидкость из куба нижней колонны J, прошедшая адсорберы 7 и переохладители 8, образующиеся в конденсаторе пары возвращаются в верхнюю колонну 2 воздухоразделительного аппарата. [c.126]

    Печной процесс получения сажи основывается на том, что газ или легкий газойль непрерывно сжигается в печп в условиях точно регулируемого недостатка воздуха (рис. 82). Выделяющейся тепловой энергии достаточно для термического расщепления оставшихся углеводородов на углерод и водород. Полученная таким путем сало отделяется от газообразных продуктов на установках Котрелля и в циклонах. [c.148]

    Окисление низкомолекулярных, газообразных при нормальных условиях парафиповых углеводородов осуществлено на нескольких больших установках США. Окисление относится к числу типичных нефтехимических процессов. Целью его в настоящее время при использовании в качестве исходного сырья пропана и бутана является получение формальдегида и уксусной кислоты, вернее уксусного ангидрида важнейшим промежуточным продуктом п большинстве случаев является ацетальдегид. [c.150]

    На некоторых предприятиях требуется улучшить технические средства осуществления процессов димеризации ацетилена на медьсодержащем катализаторе сушки ацетилена твердым каустиком ксантогенирования целлюлозы очистки воздуха от ацетилена и других углеводородов в воздухоразделительных установках грануляции расплава транспорта карбида кальция компримирова-ния и транспортирования по трубопроводам, факельным и вентиляционным системам взрывоопасных газов хранения взрывоопасных газов в газгольдерах и сжиженных углеводородных газов в сборниках , глубокого охлаждения и конденсации газовых смесей, сопровождаемых образованием в жидкой или газообразной фазе [c.8]

    Условия газофазного некаталитического окисления пропана и бутана на принадлежащих фирме Силениз Корнорейшн установках в Бишопе (Тексас, США) и Эдмонтоне (Канада) приблизительно следующие смесь, состоящая примерно из 7 объемов газа циркуляции, 1 объема свежего газа и 2 объемов воздуха под давлением 7 ат, проходит через нагретую до 370° печь, где в результате экзотермической реакции температура повышается до 450°. Горячие газы поступают затем в орошаемый водой абсорбер, где быстро охлаждаются до 90°, причем образуется водный раствор формальдегида, обогащаемый затем до концентрации порядка 12—14%. Выходящие из этого абсорбера газы промываются водой вторично. Из газов извлекаются ацетальдегид, метиловый спирт, ацетон и т. д., а углеводороды и азот остаются в газообразном состоянии. Приблизительно 75% отходящего газа как газ циркуляции возвращается в печь, где он смешивается с исходным углеводородным газом и воздухом и подвергается повторному окислению. ]Иеньшая часть (25%) выходящего из последнего абсорбера газа подается на специальную установку, где пропан и бутан отделяются от азота и низкокипящих [c.152]

    В жидком кислороде ацетилен должен отсутствовать. При юявлении следов ацетилена в жидкости конденсатора, не превы-дающих 0,4 см /л, адсорбер следует переключить. Если содержа- иe ацетилена превышает эту величину, то воздухоразделительный аппарат нужно перевести на отогревание. В крупных установках технического кислорода на потоке воздуха из турбодетандера в олонну высокого давления устанавливают газовые адсорберы, юглощающие ацетилен и другие углеводороды из газообразного юздуха при низких температурах. [c.125]

    На рис. 30 показана схема лабораторной установки, приме-нявщейся одной группой исследователей [59] для термического хлорирования низкомолекулярных, газообразных в нормальных условиях углеводородов. [c.159]

    На ряс. 65 изображена лабораторная установка для сульфохлорирования жидких и газообразных углеводородов. Она состоит из кварцевой трубки, в которую вставлены охлаждающий змеевик, трубки для входа и выхода газа, а также термометр. Трубка для входа газа имеет на нижнем конце впаянный стеклянный фильтр для более равномерного распределения газа. Облучение пр0В0 ДИтся расположенной снаружи ртутн0-кварцевой лампой. Процесс периодический и позволяет сульфохлорировать небольшие количества углеводорода. В этой же аппаратуре М ожно с успехом сульфохлорировать жи1дкие углеводороды. [c.391]

Рис. 80. Схема установки по окислению газообразных пара([)иновык углеводородов. Рис. 80. <a href="/info/13990">Схема установки</a> по <a href="/info/62718">окислению газообразных</a> пара([)иновык углеводородов.
    Колонна была расположена на наружной установке и представляла собой вертикальный аппарат диаметром 1400 мм и высотой 26 656 мм. Куб колонны обогревался при помощи кипятильника. Для удаления нз колонны накопивщих-ся полимеров ее предварительно подвергли пропарке, а затем отключили от трубопроводов, в которых находились жидкие и газообразные углеводороды, после этого раскрыли люки и проветрили колонну. Выполнив эти операции, приступили к очистке колонны от поли.меров, которая продолжалась два дня. Однако полностью от полимера колонна не была очищена. Кипятильники же вообще не подвергались очистке. И все-таки было принято решение о пуске колонны. Для этого закрыли люки, сняли заглущки с трубопроводов и колонну подсоединили к конденсатору и сборнику пропан-пропиленовой фракции, при этом в колонне образовалась взрывоопасная газовоздушная смесь. Во избежание размораживания кипятильников в них направили пар. Через несколько минут после подачи пара в кубе колонны пронзошел взрыв. Как выяснилось, воспламенение газовоздушной смеси было вызвано самовозгоранием полимера, оставшегося в кубе и кипятильнике. [c.344]

    Введение. На установке Сасол I используются два типа реакторов. В реакторах с неподвижным слоем катализатора (рис. 2) в основном получаются высококипящие жидкие углеводороды и парафин. В реакторах с циркулирующим кипящим слоем катализатора (рис. 3) преимущественно образуются газообразные углеводороды и бензин. Реакторы с неподвижным слоем были разработаны совместно фирмами Лурги и Рур-хеми и эксплуатируются с 1955 г. без затруднений. Реакторы с циркулирующим кипящим слоем были масштабированы фирмой Кэллог сразу с пилотной установки, имевшей внутренний диаметр реактора 10 см. Крупные реакторы такого типа были построены впервые. В течение нескольких лет они работали плохо, и только после многочисленных усовершенствований, а также изменений используемого катализатора начали работать удовлетворительно. Сейчас эти реакторы известны под названием реакторов Синтол . [c.165]

    В связи с полным использованием хлора в этом процессе отпадает необходимость в строительстве дорогостоящей установки для переработки хлорсодержащих побочных продуктов. Установка по способу Trans at функционирует без выбросов хлорсодержащих соединений и загрязнения окружающей среды. Процесс Trans at взрывобезопасен, так как, в отличие от традиционных процессов оксихлорирования углеводородов, в нем отсутствует контакт газообразного кислорода с углеводородами. [c.396]

    Выбор режима газификации жидких и газообразных углеводородов определяется не столько условиями термодинамического равновесия, сколько техническими возможностями ведения процесса. Давление выбирается из технико-экономических расчетов, определя-юш их экономику и технические условия всего производства водорода (о чем будет сказано в гл. VIII и IX). Широкое распространение получили установки газификации при давлении 2,0—4,2 МПа максимальное давление процесса может достигать 10 МПа. [c.106]


Смотреть страницы где упоминается термин Установки углеводородов газообразны: [c.185]    [c.195]    [c.220]    [c.220]    [c.436]    [c.38]    [c.51]    [c.4]    [c.148]    [c.246]    [c.204]    [c.177]   
Справочник по разделению газовых смесей методом глубокого охлаждения (1963) -- [ c.404 , c.405 ]




ПОИСК





Смотрите так же термины и статьи:

Расчет реакторов установок полимеризации газообразных олефиновых углеводородов

Установка для разделения нитротолуолов фирмы Гольцен-Гримм — ЧАСТЬ ПЯТАЯ Ректификация под давлением выше атмосферного Основные сведения о ректификации смесей газообразных углеводородов

Установка для совместной переработки газообразных и жидких углеводородов

Установка углеводородов



© 2025 chem21.info Реклама на сайте