Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Печень превращения аминокислот

    Цианкобаламин (витамин В12) участвует в процессах кроветворения, превращениях аминокислот, биосинтезе нуклеиновых кислот. При недостатке витамина В12 появляется слабость, падает аппетит, развивается злокачественное малокровие, нарушается деятельность нервной системы. Для эффективного усвоения организмом человека витамина В12 необходим внутренний фактор — мукополисахарид слизистой желудка (внутренний фактор Кос-ла), недостаток которого препятствует его всасыванию. Витамин Bi2 содержится в продуктах животного происхождения (мкг %) печени — 50—160, почках — 20—30, рыбе — 1—4, говядине — 2—6, сыре — 1—2, молоке — 0,4. [c.64]


Рис. 24-10. Пути превращения аминокислот в печени. Рис. 24-10. <a href="/info/1637422">Пути превращения аминокислот</a> в печени.
    Печень и другие ткани содержат ферменты, которые катализируют образование и превращения аминокислот. В последующих схемах отражены процессы образования и разложения аминокислот в организме. Простая стрелка -> обозначает одно- или двухстадийную реакцию, стрелка обозначает многостадийные реакции. Кислота, превращения которой рассматриваются в каждой данной схеме, взята в рамку, например аланин] [c.342]

    Белки, не расщепившиеся в тонком отделе кишечника, подвергаются расщеплению в толстом кишечнике под воздействием пептидаз, которые синтезируются находящейся здесь микрофлорой. Ферменты микрофлоры толстого кишечника способны расщеплять многие аминокислоты пищи с образованием различных токсичных веществ фенола, крезола, индола, сероводорода, меркаптанов и др. Такое превращение аминокислот в толстом кишечнике называется гниением белков. Токсические вещества всасываются в кровь и доставляются в печень, где подвергаются обезвреживанию. Весь процесс переваривания белков в желудочно-кишечном тракте занимает в среднем 8—12 ч после принятия пищи. [c.250]

    Производные моносахаридов активно участвуют в метаболизме живой клетки. С их многообразными превращениями связаны фотосинтез, обес печение клетки энергией, детоксикация и вывод ядовитых веществ, проникающих извне или возникающих в ходе метаболизма, биосинтез ароматических аминокислот —тирозина и фенилаланина, а также ряда других ароматических соединений, образование сложных биополимеров (полисахаридов, гликопротеинов, гликолипидов, нуклеиновых кислот), которые играют главную роль в построении субклеточных структур, обеспечивающих правильное функционирование клетки. [c.15]

    Важно подчеркнуть, что, например, при голодании адаптация метаболических превращений направлена на сведение к минимуму расщепления белка и аминокислот. При этом в печени из ацетил-КоА активируется синтез кетоновых тел (Р-оксибутирата и ацетона), которые служат источником энергии для многих тканей, в том числе и мозга. Это приводит к уменьшению скорости распада белков и снижению потребности в глюкозе. [c.449]


    В печени происходит затем превращение образовавшегося аммиака в мочевину. Глутамин-это та форма, в которой главным образом и транспортируется аммиак в крови здоровых людей его содержание существенно превышает содержание других аминокислот. [c.587]

Рис. 19-16. Три аминокислоты, способные, как установил Кребс, стимулировать превращение аммиака в мочевину в срезах печени. Орнитин и цитруллин можно, очевидно, считать предшественниками аргинина. Группы, образовавшиеся из аммиака, выделены красным. Рис. 19-16. Три аминокислоты, способные, как установил Кребс, стимулировать <a href="/info/628781">превращение аммиака</a> в мочевину в <a href="/info/103812">срезах печени</a>. Орнитин и цитруллин можно, очевидно, считать предшественниками аргинина. Группы, образовавшиеся из аммиака, выделены красным.
    За исключением большей части триацилглицеролов, питательные вещества, поглощенные в кишечном тракте, поступают непосредственно в печень-основной центр распределения питательных веществ у позвоночных. Здесь сахара, аминокислоты и некоторые липиды подвергаются дальнейшим превращениям и распределяются между разными органами и тканями. Посмотрим, как же происходит интеграция путей метаболизма основных питательных веществ в печени. [c.752]

    Печень участвует также в метаболизме аминокислот, поступающих время от времени из периферических тканей. Спустя несколько часов после каждого приема пищи из мышц в печень поступает аланин в печени он подвергается дезаминированию, а образующийся пируват в результате глюконеогенеза превращается в глюкозу крови (разд. 19.12). Глюкоза возвращается в скелетные мышцы для восполнения в них запасов гликогена. Одна из функций этого циклического процесса, называемого циклом глюкоза-аланин, состоит в том, что он смягчает колебания уровня глюкозы в крови в период между приемами пищи. Сразу после переваривания и всасывания углеводов пищи, а также после превращения части гликогена печени в глюкозу в кровь поступает достаточное количество глюкозы. Но в период, предшествующий очередному приему пищи, происходит частичный распад мышечных белков до аминокислот, которые путем переаминирования передают свои аминогруппы на продукт гликолиза пируват с образованием аланина. Таким образом, в виде аланина в печень доставляется и пируват, и КНз. В печени аланин подвергается дезаминированию, образующийся пируват превращается в глюкозу, поступающую в кровь, а КНз включается в состав мочевины и выводится из организма. Возникший в мышцах дефицит аминокислот в дальнейшем после еды восполняется за счет всасываемых аминокислот пищи. [c.754]

    Помимо превращения и распределения углеводов, жиров и аминокислот в печени активно протекают процессы ферментативной детоксикации инородных органических соединений, например лекарств, пищевых добавок, консервантов и других потенциально вредных веществ, не имеющих пищевой ценности. Детоксикация обычно состоит в том, что относительно нерастворимые соединения подвергаются ферментативному гидроксилированию, в результате чего они становятся более растворимыми, легче расщепляются и выводятся из организма. [c.756]

    По системе воротной вены кровь, оттекающая от кишечника, попадает прежде всего в печень. В этом органе аминокислоты подвергаются различным превращениям и используются для синтеза белка. Часть аминокислот разносится кровью дальше к различным тканям и органам, диффундирует через стенки тканевых капилляров, переходит в межклеточную жидкость и извлекается отсюда тканями, строящими из аминокислот свои специфические тканевые белки. [c.325]

    Тот факт, что печень является важнейшим и практически единственным органом, в котором происходит превращение аммиака в мочевину, может быть легко продемонстрирован на животных с так называемой фистулой Экка-Павлова. И. П. Павловым и М. В. Ненцким было обнаружено, что если перевязать печеночную артерию и при помощи фистулы Экка-Павлова выключить систему воротной вены из ее связи с печенью, то наблюдается сильное уменьшение содержания мочевины в моче. В то же время количество аммиака, выделяющегося с мочой, увеличивается. В дальнейшем выяснилось, что, пропуская растворы, содержащие аммонийные соли или аминокислоты, через переживающую печень, можно наблюдать образование мочевины, которая появляется в значительном количестве в жидкости, оттекающей от печени. Работами С. С. Салазкина было окончательно установлено, что в печени происходит синтез мочевины из аммонийных солей и азота аминокислот. [c.338]

    Первоначально сложилось убеждение, что глутамин и аспарагин могут участвовать в реакциях переаминирования лишь после предварительного дезамидирования с образованием соответствующих дикарбоновых аминокислот [257, 281]. Не вызывает сомнений, что распад глутамина и аспарагина в организме может начинаться с дезамидирования, после чего образующиеся аспарагиновая и глутаминовая кислоты подвергаются тем или иным дальнейшим превращениям, включая и реакции переаминирования, однако получены данные, свидетельствующие о том, что глутамин и аспарагин могут как таковые непосредственно вступать в реакции переаминирования. Ферменты, катализирующие такие реакции, найдены в печени и почках млекопитающих. Переаминирование глутамина впервые было обнаружено в опытах с ферментами из печени крысы, которые катализируют следующую реакцию [282]  [c.221]


    Печень играет центральную роль в обмене белков. Она выполняет следующие основные функции синтез специфических белков плазмы образование мочевины и мочевой кислоты синтез холина и креатина трансаминирование и дезаминирование аминокислот, что весьма важно для взаимных превращений аминокислот, а также для процесса глюконеогенеза и образования кетоновых тел. Все альбумины плазмы, 75—90% а-глобу-линов и 50% 3-глобулинов синтезируются гепатоцитами. Лишь у-гло-булины продуцируются не гепатоцитами, а системой макрофагов, к которой относятся звездчатые ретикулоэндотелиоциты (клетки Купфера). В основном у-глобулины образуются в печени. Печень является единственным органом, где синтезируются такие важные для организма белки, как протромбин, фибриноген, проконвертин и проакцелерин. [c.558]

    Известны также нарушения обмена отдельных аминокислот. Многие из этих нарушений имеют врожденный или наследственный характер (см. главу 12). Примером может служить фенилкетонурия. Причина заболевания - наследственно обусловленный недостаток фенилаланин-4-моноокси-геназы в печени, вследствие чего метаболическое превращение аминокислоты фенилаланина в тирозин блокировано. Результат такого блокирования -накопление в организме фенилаланина и его кетопроизводных и появление их в большом количестве в моче. Обнаружить фенилкетонурию очень просто с помощью хлорида железа спустя 2-3 мин после добавления в мочу нескольких капель раствора хлорида железа появляется оливковозеленая окраска. [c.620]

    Трансаминирование является очень важным процессом превращения аминокислот в организме. В этой реакции происходит обратимый перенос а-аминогруппы аминокислоты на кетокислоту без промежуточного отщепления аммиака. Реакция протекает наиболее активно, когда один из субстратов представлен дикарбоновой амино-или кетокислотой. Процесс трансаминирования катализируется ферментами — аминотрансферазами, коферментом которых является пиридоксальфосфат. Процесс активно протекает в печени, сердечной мышце, скелетных мышцах, почках, семенниках и других органах. В сыворотке крови активность аминотрансфераз очень низка. При нарушении целостности клеточных мембран аминотрансферазы проникают из тканей в кровь. Поэтому определение активности аминотрансфераз в сыворотке крови является важным тестом для диагностики таких заболеваний, как инфаркт миокарда, вирусный гепатит, цирроз печени и др. [c.167]

    Последнее о б ловлёно п ежде всего повышением в присутствии инсулина проницаемости клеточных мембран мышечной и, возможно, жировой ткани по отношению к виноградному сахару. Инсулин задерживает также превращение в печени некоторых аминокислот в сахар. [c.260]

    При дезаминировании аспарагиновой кислоты, аланина и глутаминовой кислоты образуются а-кетокислоты, принадлежащие к числу промежуточных продуктов обмена углеводов. Введение per os этих аминокислот, а также валина [97, 98], серина [99, 100], глицина [99, 101], треонина [102], аргинина [103, 104],. гистидина [104—106] и изолейцина [104, 107] вызывает у голодающих животных увеличение содержания гликогена в печени. В определенных условиях пролин [104], цистеин [104] и метионин [108] также могут вызывать добавочное образование у леводов, тогда как в результате обмена тирозина (стр. 417), фенилаланина (стр. 425) и лейцина (стр. 359) образуютсл кетоновые тела. Недостаток этих экспериментальных приемов состоит в том, что получаемые результаты касаются обмена аминокислот в нефизиологических условиях не удивительно, что некоторые аминокислоты проявляют при одних условиях гликогене-тическое действие, а при других — кетогенное. Для изучения превращения аминокислот в процессах обмена веществ наиболее удобно вводить изотопную метку в углеродный остов аминокислоты и затем выяснить судьбу меченого углерода путем исследования продуктов обмена. Работы этого рода, относящиеся к отдельным аминокислотам, подробно рассмотрены в гл. IV. [c.181]

    ГЛЮКОНЕОГЕНЕЗ. Когда в связи с расходованием глюкозы запасы гликогена в печени истощаются, глюкоза может синтезироваться из любого неуглеводного предшественника. Этот процесс называется глюконеогенезом. Происходит он при истощении запасов гликогена в печени. Низкий уровень глюкозы в крови (гипогликемия) стимулирует посредством симпатической нервной системы выброс адреналина, который, как уже отмечалось, способствует сиюминутному удовлетворению потребностей организма в глюкозе. Низкий уровень глюкозы в крови приводит также к стимуляции гипоталамуса, который выделяет кортиколиберин (разд. 17.6.5), вызывающий секрецию адренокортикотропного гормона (АКТГ) передней долей гипофиза. Под действием АКТГ усиливается синтез и высвобождение глюкокортикоидных гормонов (в основном кортизола, известного также как гидрокортизон). Эти гормоны стимулируют переход из тканей в кровь аминокислот, глицерола и жирных кислот, а также синтез в печени ферментов, катализирующих превращение аминокислоты и глицерола в глюкозу, т. е. осуществляют глюконеогенез. Жирные кислоты расщепляются с образованием ацетилкофер-мента А, а затем окисляются в цикле Кребса. [c.425]

    Биологическое действие. Витамин В,2 (цианкобаламин) участвует в синтезе нуклеиновых кислот и превращениях аминокислот, что приводит к активации синтеза белка, процессов роста и восстановления, т. е. проявляет наиболее сильное анаболическое действие. Он увеличивает количество эритроцитов и предупреждает жировую инфильтрацию печени (липотроп-ное действие), а также улучшает обмен аминокислоты метионина и влияет на процессы биологического окисления пировиноградной и уксусной кислот. [c.118]

    В 1932 г. Кребс и Хензелайт [33с] предположили, что в срезах печени мочевина образуется в ходе циклического процесса, в котором орнитин превращается сперва в цитруллин и далее в аргинин. Гидролитическое расщепление аргинина приводит к образованию мочевины и регенерации орнитина (рис. 14-4, внизу). Последующие эксперименты полностью подтвердили это предположение. Попытаемся проследить весь путь удаляемого в печени азота избыточных аминокислот. Транс-аминазы (стадия а, рис. 14-4, в центре справа) переносят азот на а-кетоглутарат, превращая последний в глутамат. Поскольку мочевина содержит два атома азота, должны быть использованы аминогруппы двух молекул глутамата. Одна из этих молекул прямо дезаминируется глутаматдегидрогеназой с образованием аммиака (стадия б). Этот аммиак присоединяется к бикарбонату (стадия в), образуя карбамоилфосфат, карбамоильная группа которого переносится далее на орнитин с образованием цитруллина (стадия г). Азот второй молекулы глутамата путем переаминирования переносится на оксалоацетат (реакция й) с превращением его в аспартат. Молекула аспартата в результате реакции с цитруллином целиком включается в состав аргининосукцината (реакция е). В результате простой реакции элиминирования 4-углеродная цепь аргининосукцината превращается в фумарат (стадия ж) в качестве продукта элиминирования образуется аргинин. Наконец, гидролиз аргинина (стадия з) дает мочевину и регенерирует орнитин. [c.96]

    Метаболизм глюкозы у животных имеет две наиболее важные особенности [44]. Первая из них — это запасание гликогена, который в случае необходимости может быть быстро использован в качестве источника мышечной энергии. Однако скорость гликолиза может оказаться высокой — весь запас гликогена в мышце может быть истощен всего лишь за 20 с при анаэробном брожении или за 3,5 мин в случае окислительного метаболизма [45]. Таким образом, должен существовать способ быстрого включения гликолиза и его выключения после того, как необходимость в нем исчезнет. В то же время должна иметься возможность обратного превращения лактата в глюкозу или в гликоген (глю-конеогенез). Запас глюкогена, содержащегося в мышцах, должен пополняться за счет глюкозы крови. Если количество глюкозы, поступающей с пищей или извлекаемой из гликогена печени, оказывается недостаточным, то она должна синтезироваться из аминокислот. [c.503]

    При недостаточной секреции (точнее, недостаточном синтезе) инсулина развивается специфическое заболевание—диабет (см. главу 10). Помимо клинически выявляемых симптомов (полиурия, полидипсия и полифагия), сахарный диабет характеризуется рядом специфических нарушений процессов обмена. Так, у больных развиваются гипергликемия (увеличение уровня глюкозы в крови) и гликозурия (выделение глюкозы с мочой, в которой в норме она отсутствует). К расстройствам обмена относят также усиленный распад гликогена в печени и мышцах, замедление биосинтеза белков и жиров, снижение скорости окисления глюкозы в тканях, развитие отрицательного азотистого баланса, увеличение содержания холестерина и других липидов в крови. При диабете усиливаются мобилизация жиров из депо, синтез углеводов из аминокислот (глюконеогенез) и избыточный синтез кетоновых тел (кетонурия). После введения больным инсулина все перечисленные нарушения, как правило, исчезают, однако действие гормона ограничено во времени, поэтому необходимо вводить его постоянно. Клинические симптомы и метаболические нарушения при сахарном диабете могут быть объяснены не только отсутствием синтеза инсулина. Получены доказательства, что при второй форме сахарного диабета, так называемой инсулинрезистентной, имеют место и молекулярные дефекты в частности, нарушение структуры инсулина или нарушение ферментативного превращения проинсулина в инсулин. В основе развития этой формы диабета часто лежит потеря рецепторами клеток-мишеней способности соединяться с молекулой инсулина, синтез которого нарушен, или синтез мутантного рецептора (см. далее). [c.269]

    Помимо перечисленных 4 типов дезаминирования аминокислот и ферментов, катализирующих эти превращения, в животных тканях и печени человека открыты также три специфических фермента (серин- и треониндегидратазы и цистатионин-у-лиаза), катализирующих неокислительное дезаминирование соответственно серина, треонина и цистеина. [c.434]

    Превращения а-кетокислот. Образовавшиеся в процессе дезаминирования и трансдезаминирования а-кетокислоты подвергаются в тканях животных различным превращениям и могут вновь трансаминироваться с образованием соответствующей аминокислоты. Это так называемый синтетический путь превращения. Опыты с перфузией растворов а-кето-кислот и аммиака через изолированную печень показали, что в оттекающей из печени жидкости действительно имеются соответствующие исходным [c.439]

    Организм человека или животного не в состоянии построить глюкозу из неорганических веществ. Однако в печени и в почках молочная кислота и а-аминокислоты могут превращаться в глюкозу глюконеоге-нез). Важным промежуточным продуктом при этом, как и при деструкции глюкозы, является та же пировиноградная кислота. Тем не менее глюконеогенез не представляет собой просто обращения процесса гликолиза. Дело в том, что в перечисляемых ниже трех ступенях гликолиза равновесие сильно смещено в сторону образования продуктов реакции при реакции, катализируемой гексокиназой, в сторону получения глю-козо-6-фосфата при реакции, катализируемой фосфофруктокиназой — в сторону фруктозо-1,6-дифосфата при реакции с участием пируваткиназы — в сторону пировиноградной кислоты. Поэтому в процессе глюконеогенеза эти ступени обходятся (рис. 3.8.2). Обращение превращения пировиноградной кислоты в фосфат енола пировиноградной кислоты осуществляется действием оксалилуксусной кислоты при участии ферментов пируваткарбоксилазы и фосфатенолпируваткарбоксилазы  [c.701]

    После того как в мыщцах истощается запас гликогена, основным источником пирувата становятся аминокислоты, образующиеся после деградации белков. При этом более 30% аминокислот, поступающих из крови в печень, приходится на аланин — одну из гликогенных аминокислот, углеродный скелет которой используется в печени как предшественник для синтеза глюкозы. Механизм превращения мышечных аминокислот в аланин, схема его участия в глюконеогенезе представлены в гл. 24. Другим источником пирувата является лактат, который накапливается в интенсивно работающих мышцах в процессе анаэробного гликолиза, когда митохондрии не успевают реокислить накапливающийся НАДН. Лактат транспортируется в печень, где снова превращается в пируват, а затем в глюкозу и гликоген. Этот физиологический цикл (рис. 20.2) называют циклом Кори (по имени его первооткрывателя). У цикла Кори две функции — сберечь лактат для последующего синтеза глюкозы в печени и предотвратить развитие ацидоза. [c.273]

    Выбор такого соединения, как аланин, для переноса аммиака из напряженно работающих скелетных мышц в печень-это еще один наглядный пример принципа экономии, действующего в живых организмах. При тяжелой работе в сокра-щаюхцихся скелетных мышцах образуется не только аммиак, но еще и большие количества пирувата, представляющего собой продукт гликолиза. Оба этих продукта должны быть доставлены в печень, где аммиак превратится в мочевину и в такой форме будет выведен из организма, а из пирувата ресинтезируется глюкоза, которая через кровь будет возвращена в мышцы. Животные нашли путь, в котором один цикл решает обе проблемы в этом цикле аммиак соединяясь с пируватом, образует аланин-нетоксичную нейтральную аминокислоту, которая через кровь направляется в печень и уже здесь подвергается дальнейшим превращениям (рис. 19-14). [c.588]

    В организме уреотелических животных аммиак, образующийся при дезаминировании аминокислот, превращается в печени в мочевину. Это превращение совершается в форме цикла, который был назван циклом мочевины. Его открыли Ганс Кребс (разд. 16.4) и Курт Хенселайт в 1932 г. Кребсу, таким образом, принадлежит честь открытия двух важнейших метаболических циклов. Цикл мочевины бьш открыт первым в процессе исследований, которые Кребс проводил, работая [c.589]

    Глюконеогенез ЭТО образование нового сахара из неуглеводных предшественников, среди которых наибольшее значение имеют пируват, лактат, промежуточные продукты цикла лимонной кислоты и многие аминокислоты. Подобно всем прочим биосинтетическим путям, ферментативный путь глюконеогенеза не идентичен соответствующему катаболическому пути, регулируется независимо от него и требует расхода химической энергии в форме АТР. Синтез глюкозы из пирувата происходит у позвоночных главным образом в печени и отчасти в почках. На этом биосинтетическом пути используются семь ферментов, участвующих в гликолизе они функционируют обратимо и присутствуют в большом избытке. Однако на гликолитическом пути, т. е. на пути вниз , имеются также три необратимые стадии, которые не могут использоваться в глюконеогенезе. В этих пунктах глюконеогенез идет в обход гликолитического пути, за счет других реакций, катализируемых другими ферментами. Первый обходный путь-это превращение пирувата в фосфоенолпируват через оксалоацетат второй-это дефосфорилирование фруктозо-1,6-дифосфата, катализируемое фруктозодифосфатазой, и, наконец, третий обходный путь-это дефосфорилирование глюкозо-6-фосфата, катализируемое глюкозо-6-фосфатазой. На каждую молекулу D-глюкозы, образующуюся из пирувата, расходуются концевые фосфатные группы четырех молекул АТР и двух молекул GTP. Регулируется глюконеогенез через две главные стадии 1) карбоксилирование пирувата, катализируемое пируваткарбоксилазой, которая активируется аллостерическим эффектором ацетил-СоА, и 2) дефосфорилирование фруктозо-1,6-дифосфата, катализируемое фруктозодифосфатазой, которая ингибируется АМР и активируется цитратом. По три атома углерода от каждо- [c.617]

    Так, если в рацион нормального животного вводить больщое количество белка, то увеличивается количество выделяемой им мочевины. Если же у животного удалить печень, то оно может прожить несколько дней при условии, что из рациона будут исключены белки. Но если в пищу животных с удаленной печенью добавить белки, то такие животные быстро погибнут. Дело в том, что в почках происходит образование аммиака из аминокислот, а печень переводит этот аммиак в мочевину. Поэтому животное, лишенное печени, умирает от интоксикации большими количествами аммиака. Дальнейшим расширением этого экспериментального подхода явился метод получения хирургическим путем изолированных органов, жизнедеятельность которых поддерживается с помощью перфузии их кровью, плазмой или синтетическим раствором, приближающимся по составу к нормальной крови. Деятельность сердца имитировали насосами, с помощью которых, кроме того, перфу-зионный раствор насыщали кислородом. Перфузия и теперь еще является ценным методическим приедюм, но сейчас ее больше используют при изучении контроля метаболических процессов, а не при изучении метаболических путей. Однако в последнее время при изучении глюконеогенеза в печени крыс было установлено, что метод перфузии имеет ряд преимуществ по сравнению с использованием срезов печени [16]. При работе со срезами печени скорость синтеза глюкозы из таких субстратов, как сукцинат, малат, глу-тамат и аспартат, обычно очень низка. При использовании же перфузированной печени скорость синтеза глюкозы превышала максимальную скорость у нормального животного. В результате опытов с перфузией было показано, что в печени происходит количественное превращение аммиака в мочевину и образование ацето-уксусной кислоты из жирных кислот, содержащих четное число атомов углерода. [c.17]

    Дайер отметила также, что при скармливании крысам этио-нина они теряли в весе быстрее, чем при полном исключении метионина из рациона, причем такое действие этионина снижалось при одновременном введении метионина [223]. Наблюдения Дайер неоднократно подтверждены установлено, кроме того, что этионин тормозит рост микроорганизмов [217, 220]. У крысы этионин тормозит включение глицина и серы метионина в белки тела, а также превращение метионина в цистин [221]. У самок крысы введение больших количеств этионина вызывает вскоре жировое перерождение печени это нарушение устраняется введением метионина, но не может быть снято рядом других исследованных аминокислот [226]. Этионин тормозит у крыс перенос метильной группы метионина к холину, но не влияет на образование креатина [222]. Интересно отметить, что холин, подобно метионину, оказывает благоприятное действие при интоксикации этионином [224]. После введения крысам этионина, меченного по метиленовому углероду этильной группы, значительное количество радиоактивного изотопа было обнаружено в три-метиламиновом остатке холина. Углерод этильной группы включался также в креатинин кроме того, сера этионина переходила в состав цистина [225]. Вполне очевидно, что этионин подвергается превращениям в организме крысы. Высказано предположение, что его токсическое действие обусловлено образованием этильных аналогов холина и других соединений [274, 275]. Это предположение подтверждается данными о том, что триэтилхолин подавляет рост крыс [225] и тормозит синтез [c.147]

    Высшие животные не могут синтезировать ароматические аминокислоты de novo, однако показано, что в организме животных возможны некоторые реакции ароматизации циклических соединений. Хинная кислота, которая переходит в бензойную кислоту, и некоторые другие циклические соединения подвергаются в препаратах печени и почек превращению в ароматические соединения [929]. [c.416]

    Уже давно известно, что при распаде фенилаланина и тирозина в организме животных образуется ацетоуксусная кислота. Начало расшифровки этого превращения было положено исследованиями о некоторых врожденных пороках обмена веществ у человека (см. гл. V). Выяснение промежуточных реакций этого процесса значительно продвинулось в последние годы в результате исследований с применением меченых метаболитов и различных ферментных препаратов. Экспериментальные данные о выделении гомогентизиновой кислоты у больных алкапто-нурией, о повышенном выделении гомогентизиновой кислоты после приема с пищей фенилаланина и тирозина [930], а также об образовании ацетоуксусной кислоты из гомогентизиновой кислоты в перфузируемой печени [931, 932] дали основание предполагать, что гомогентизиновая кислота играет роль промежуточного продукта в обмене ароматических аминокислот. Было установлено, что у нормальных животных гомогентизиновая кислота, подобно фенилаланину и тирозину, подвергается окислению с образованием, в числе других продуктов, ацетоуксусной кислоты. При скармливании животным больших количеств фенилаланина и тирозина наблюдается выделение гомогентизиновой кислоты [933—938]. [c.416]

    При наличии метаболической энергии в печени и почках млекопитающих из предшественников с короткими углеродными цепями может синтезироваться глюкоза, а следовательно, пентозы, гликоген и другие полисахариды. Предшественниками могут быть 1) пируват или лактат 2) так называемые гликогенные аминокислоты (см. гл. XVII) 3) любой другой компонент, который в процессе катаболизма может быть превращен в пируват или один из метаболитов цикла лимонной кислоты. В покоящейся скелетной мышце (но не в сердечной и не в гладкой мышце) фосфорилированные трехуглеродные соединения, в особенности а-глицерофосфат, снова превращаются в гли- [c.299]


Смотреть страницы где упоминается термин Печень превращения аминокислот: [c.492]    [c.456]    [c.211]    [c.398]    [c.514]    [c.187]    [c.590]    [c.624]    [c.342]    [c.178]    [c.148]    [c.360]   
Основы биохимии Т 1,2,3 (1985) -- [ c.754 ]




ПОИСК





Смотрите так же термины и статьи:

Печень аминокислот



© 2025 chem21.info Реклама на сайте