Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пограничный слой гидродинамический

    Прандтля служит масштабным множителем, определяющим соотношение толщины гидродинамического и теплового пограничных слоев. Этот формальный результат отражает нетривиальный факт феноменологической термодинамики неравновесных процессов переноса — подобия процессов переноса субстанции, что хорошо видно из уравнения (4.0). [c.158]

    Проблеме гидродинамической устойчивости ламинарного течения в плоских каналах и трубах с проницаемыми стенками и условиями перехода в турбулентный режим посвящен ряд исследований [1]. Выводы о влиянии отсоса (вдува) на устойчивость пограничного слоя сводятся к следующему в плоском канале отсос стабилизирует течение, повышая критическое число Рейнольдса (рис. 4.6) вдув вначале резко дестабилизирует процесс, однако при параметрах вдува, больших критического, наблюдается слабый рост критического значения числа Рейнольдса Re . Потеря устойчивости ламинарного течения в трубах с проницаемыми стенками имеет особенности в частности, отсос дестабилизирует течение, снижая Re . [c.132]


    При плоском входном профиле скорости, когда формирование гидродинамического и диффузионного пограничных слоев происходит одновременно, наблюдается некоторое увеличение числа Шервуда на начальном участке и для Ч имеем  [c.143]

    На границе двух различных фаз гидродинамическая обстановка обычно очень сложная. Основным понятием в учении о потоках является открытый Прандтлем очень тонкий пограничный слой (расположенный у границы текущей среды), для которого характерен гораздо больший градиент скорости, т. е. более быстрое ее изменение [6]. Независимо от Прандтля Нернст установил подобное же изменение концентрации у границы фаз 17]. Это явление также оказалось общим (как и открытые независимо друг от друга законы для потоков теплоты, массы и импульса). Таким образом, для тонкого слоя вблизи границы фаз характерно резкое изменение концентрации, температуры и скорости. Скорость переноса для любого потока имеет размерность  [c.67]

    При больших значениях критериев Рейнольдса (порядка от нескольких десятков до нескольких сотен) исследование процесса обтекания сферического пузыря проводилось в приближении гидродинамического пограничного слоя в работах Левича и Мура [14, 15]. Это допустимо, поскольку в данном диапазоне чисел Рейнольдса пузырь мало деформирован и его обтекание практически безотрывно. [c.15]

    Значения и и получаются из опытов и зависят от способа стабилизации, от условий теплообмена между зоной рециркуляции и пограничным слоем, гидродинамических условий течения. Обычно коэффициент п = 0,5-г0,8. [c.493]

    При движении незакрепленного кристалла в расплаве с примесью в поле массовых сил в окрестности кристалла формируются пограничные слои гидродинамический, тепловой и диффузионный. Будем рассматривать только такое движение кристалла, когда толщина теплового и диффузионного слоев меньше размера кристалла, т. е. конвективный перенос тепла и массы становится преобладающим по сравнению с молекулярным переносом. При таких условиях изменение температуры Т и концентрации примеси с (г/см ) в пограничных слоях описывается уравнениями теплового и диффузионного пограничных слоев, записанных в сферической системе [c.257]

    Непосредственные измерения показывают, что около влажной поверхности материала формируются различные пограничные слои гидродинамический, тепловой и концентрационный. В общем случае подобие полей скорости, температуры теплоносителя и его влагосодержания вблизи влажной поверхности материала отсутствует. [c.6]


    Другие случаи. Для инженеров представляют интерес и другие случаи теплообмена в ламинарном потоке с развивающимся профилем скорости. Один из случаев — это плоская пластинка, нагретая часть которой начинается на некотором расстоянии от передней кромки. При этом, когда начинает развиваться температурный пограничный слой, гидродинамический пограничный слой уже частично развит. [c.315]

    В работе [62] та же модель использована для расчета тепло-и массообмена в слое в области Re = 10 — 10 и Рг = 0,6—3,0, где при ламинарном гидродинамическом пограничном слое нельзя пренебрегать силами инерции и влиянием отрывного обтекания кормовой части сферы. Для средней по поверхности величины получена зависимость  [c.142]

    Иную теорию звукообразования в ГА-технике предложил В. М. Фридман [433]. По его представлениям параметры поля звукового давления определяются кавитационными явлениями. Согласно такой модели, ансамбль кавитационных пузырьков в момент коллапса генерирует ударные сферические волны, которые распространяются со скоростью звука в среде. Появление кавитационных пузырьков связывается с особенностями гидродинамической обстановки в работающем аппарате, среди которых выделяются локальный отрыв пограничного слоя, наличие острых граней в прорезях ротора и статора аппарата. [c.31]

    Учитывая, что в гидродинамическом, тепловом и диффузионном пограничных слоях в действительности отсутствует полное подобие в распределении скоростей, температур и концентраций, Кольборн внес в формулы (5.8) и (5.9), выражающие аналогию Рейнольдса, поправку в виде функции критерия Прандтля (Рг" ) [c.154]

    Толщина гидродинамического пограничного слоя при обтекании сферического пузыря  [c.15]

    В приближении гидродинамического пограничного слоя решение линеаризованных уравнений Навье - Стокса и неразрывности (1.1) и [c.16]

    Течение вокруг газового пузырька исследовалось также с помощью конечно-разностного метода [25], причем здесь удалось получить решение до Re <200. Обтекание газового пузырька практически безотрывно, и уже при Re 100 гидродинамические характеристики течения находятся в хорошем соответствии с данными расчетов, выполненными в приближении гидродинамического пограничного слоя [26]. Это обстоятельство позволяет течение вокруг газового пузырька при значениях Re порядка нескольких десятков или сотен описывать аналитическими формулами теории пограничного слоя. Сопоставление численных расчетов [25] с приближенными [15] показало, что для коэффициента сопротивления газового пузырька уже при Re >50 с достаточной степенью точности можно пользоваться формулой Мура (1.74). [c.19]

    Область за пределами гидродинамического пограничного слоя и застойных зон близ точек соприкосновения частиц принято называть ядром потока. Истинные локальные скорости в ядре потока также изменяются в пространстве (в зависимости от локальной геометрии слоя), а при турбулентном режиме течения подвержены и нерегулярным колебаниям во времени. Гидродинамическая картина [c.215]

    Величину Ф , входящую в формулу (6.51), определим, полагая, что пр больших К2 толщина зоны реакции пренебрежимо мала и может быть заменена фронтом. Решение уравнений диффузионного пограничного слоя относительно реагирующих веществ при допущении, что фронт реакции совпадает с гидродинамической линией тока [405], приводит к значению Фо , совпадающему с результатами расчета по формуле (6-60). Для мгновенной химической реакции второго порядка эта формула будет иметь место при любых значениях Ре, поскольку в данном случае роль гидродинамического влияния, как обсуждалось выше, несущественна. [c.275]

    Ключевой задачей теории является определение степени затухания коэффициентов турбулентного обмена с приближением к межфазной границе. Недостаточная разработанность теории турбулентности вообще и особенно в применении к системам жидкость—газ не позволяет пока сделать это строго, исходя лишь из гидродинамических соображений. Однако количественная оценка характера затухания возможна на основе надежных экспериментальных данных о зависимости коэффициента массоотдачи от коэффициента молекулярной диффузии. Показатели степени в законе затухания коэффициентов турбулентного обмена и в зависимости к от Оа связаны простым соотношением. Поэтому выявление характера влияния О а на ки по выражению Д. А. Франк-Каменецкого позволяет как бы физико-химически зондировать пограничный слой. В частности, для свободной границы жидкость-газ, как будет показано ниже, многочисленными экспериментальными работами в большинстве практически важных случаев установлена пропорциональная зависимость между к и коэффициентом молекулярной диффузии в степени 0,5. Это соответствует полученным на основании некоторых допущений предсказаниям основанным на квадратичном законе затухания. Доп. пер. [c.101]

    Установлено существование турбулентности у поверхности, являющейся следствием гидродинамической неустойчивости, при которой малые возмущения вызывают конвективные потоки. При этом могут возникать изменения в концентрации реагирующих веществ в пограничном слое. [c.101]


    Кроме граничных условий на проницаемых стенках канала, существенно состояние среды во входных сечениях каналов. Для напорных каналов обычно используют плоские входные профили скорости и концентрации в этом случае гидродинамический и диффузионный пограничные слои формируются совместно. В ряде случаев, когда имеется участок мембранного элемента с непроницаемыми стенками, входной профиль скорости в сечении, где начинается проницание через мембрану, принимают гидродинамически стабилизированным далее в канале происходит деформация исходного распределения скорости и формирование диффузионного пограничного слоя. [c.123]

    При высоких плотностях поперечного потока вещества изменения толщин гидродинамического и теплового пограничных слоев и [c.151]

    Концентрационная поляризация связана с образованием пограничного слоя, отделяющего поверхность мембраны от раствора в объеме. Толщина этого пограничного слоя в общем случае определяется гидродинамическими условиями в аппарате — интенсивностью перемешивания и скоростью движения потока. Профиль концентрации внутри этого слоя также зависит от режима движения раствора. [c.170]

    Как уже упоминалось, полное подобие распределения скоростей, температур и концентраций возможно при условии совпадения по толщине гидродинамического, теплового и диффузионного пограничных слоев, т. е. когда а = тл Рг 1а = 1 и Ргв = у/Ос 1. [c.154]

    Исходя из допущенной теории пограничного слоя, было подучено решение для случая Ке >1. Приближенные и численные решения гидродинамической задачи для различных интервалов чисел Ке были получены также в работах [54—59]. [c.234]

    Теория Поттера (пограничных слоев). Поттер [77] рассматривает молекулярную диффузию в жидкости, двигающейся упорядоченно, принимая за основу выводов гидродинамические отношения, т. е. относительное движение ламинарных потоков, двигающихся в том же направлении. Для такой модели массо-перенос определяется коэффициентом диффузии О в степени п, изменяющейся в зависимости от отношения количеств фаз ЕЩ. Показатель степени. имеет значения в пределах =0,33 0,5  [c.78]

    Уменьшение вязкости при увеличении температуры широко используется, но имеет предел, связанный со свойствами жидкости и пропитываемых систем. Для однородной жидкости ее вязкость от каких-либо воздействий существенно не изменяется. В неоднородных и неньютоновских жидкостях на вязкость могут повлиять электрические и гидродинамические явления. Вязкость полимеров (расплавов, растворов) может уменьшаться также в результате деструкции. Казалось бы, что наиболее простым является влияние на гидродинамику фильтрационного потока. Поскольку толщина пограничного слоя в колеблющихся потоках уменьшается с ростом частоты по закону [c.127]

    Для обеспечения значительных скоростей растворения необходимо подвергнуть материал высокой степени измельчения и для развития максимальной поверхности контакта фаз удалить частицы одну от другой на расстояния, превышающие толщину гидродинамического пограничного слоя. [c.153]

    Рассмотрены топологические структуры межфазных явлений в гетерофазных ФХС. Обсуждены особенности топологического описания теплового, механического и покомпонентного равновесия фаз. Дано преставление в виде топологических структур связи ряда моделей межфазного переноса двухпленочной модели, модели обновления поверхности контакта фаз, модели диффузионного пограничного слоя, модели развитой межфазной турбулентности. Показано, что диаграммы межфазного переноса с учетом условий равновесия в рамках существующих теорий структурно изоморфны и различаются между собой лишь значениями параметра проводимости и формой его зависимости от гидродинамической обстановки в системе. [c.182]

    Влияние массообмена на теплообмен определяется в основном тем, что, как это показал Берман [21], поперечный поток вещества вызывает изменение Толщины гидродинамического и теплового пограничных слоев б, распределения в них продольных скоростей парогазового потока и температур по сравнению со случаем теплообмена, не осложненного массообменом (рис. [c.151]

    На участке развитого пузырькового кипения, ограниченного точками В и С, интенсивность полностью определяется гидродинамической структурой пограничного слоя жидкости, пронизываемого микротоками, возникающими вследствие процесса парообразования. [c.211]

    Коэффициент диффузии легирующих примесей в расплавленном германии порядка 10 —10 м 1сек [21]. Кинематическая вязкость расплавленного германия составляет 0,14-10- м 1сек [22]. Критерий Шмидта больше единицы. Это дает основание различать два подкристаллизационных пограничных слоя — гидродинамический и диффузионный причем толщина первого бк больше толщины второго бд. [c.73]

    Дальнейшее развитие гидродинамическая теория вязкого подслоя получила в работе Шуберта и Коркоса [43, 44]. В ней линеаризованные уравнения Навье — Стокса для пульсаций скорости упрощались за счет того факта, что в области вязкого подслоя отсутствует нормальный градиент пульсаций давления. Шуберт и Коркос положили этот факт в основу линейной теории и на этой основе смогли разрешить многие из отмеченных трудностей в постановке граничных условий. При этом подслой рассматривался как узкая область типа пограничного слоя, реагирующая на турбулентные флуктуации давления, которые создают известную движущую силу для процесса переноса импульса в подслое. Предположение о том, что р(х,у,гх)=р х,хг) (где индекс ш — условие на стенке), позволило учесть условия во внешней части пограничного слоя, связав тем самым процессы эволюции турбулентных возмущений в этих частях пограничного слоя, и в то же время дало возможность ограничиться следующими простыми усло-вия.ми обычные условия прилипания на стенке и требование, чтобы при возрастании у влияние вязкости в решении исчезало. [c.179]

    Как видно из изложенного выше, значительная часть существующих в настоящее время теорий массопередачн (таких как теории проницания и обновления поверхности и их различные модификации) основана на слишком грубых упрощениях и подменяет учет конкретных гидродинамических условий введением не поддающихся расчету и ненаблюдаемых параметров. Перспективной представляется только теория диффузионного пограничного слоя, позволяющая путем физически обоснованных упрощений преодолеть математические трудности, связанные с решением уравнения конвективной диффузии, и разумно родойти к описанию турбулентного режима массопередачи. Несмотря" на [c.183]

    И, наконец, при третьем режиме, рассматриваемом Уике, константа скорости становится настолько большой, что реакция существенно локализуется на внешней поверхности зерна, и, таким образом, массопередача через гидродинамический пограничный слой становится лимитирующим фактором. Температурный коэффициент наблюдаемой скорости реакции становится, следовательно, даже еще меньше и соответствует температурной зависимости отношения 0 х, где О — соответствующий коэффициент диффузии через пограничный слой, а х — его эффективная толщина. [c.43]

    Касание вблизи точки О (оно не показано на рис. 46) также отвечает критическому условию, но другого типа. Бесконечно малое перемещение от точки касания прямой теплоотвода влево или кривой выделения тепла вправо приводит к резкому падению темиературы, т. е. горючий материал, вместо того чтобы реагировать ири температуре, соответствующей точке Q или более высокой температуре, находится в устойчивом состоянии при температурах, отвечающих точкам иересечення, лежащим левее Ь. В связи с этим Франк-Каменецкий назвал эту точку критической точкой тушения, а Ван-Лун — минимальной температурой горения. Подобно температуре воспламенения, эта температура пе является постоянной величиной, поскольку она зависит от различных факторов. Например, значительное влияние на нее может оказывать скорость газа. В диффузионной области скорость газа, помимо влияния на коэффициент теплопередачи, может также определять положение кривой теило-выделения. Этот эффект обнаруживается в том случае, когда наиболее медленной стадией является ие диффузия внутри пор к поверхности взаимодействия и от нее, а диффузии через гидродинамический пограничный слой к наружной поверхности твердого вещества. [c.174]

    Процесс массообмена моделировали в плоском канале высотой Н= —4 мм, шириной г = 60 мм и общей длиной 950 мм, включавшей зону гидродинамической стабилизации (400 мм) и участок селективного отсоса (450 мм). Верхние и нижние стенки канала проницаемы (использована асимметричная мембрана из поливинилтриметилсилана). Развитие диффузионного пограничного слоя контролировали в пяти точках канала, где установлены оптические окна. Для измерения профиля концентраций использован интерферометрический принцип регистрации фазовых изменений фронта световой волны при прохожденпи ее через оптическую неоднородность, представляющую собой двумерный диффузионный пограничный слой. Интерферограм-мы процесса фиксировали с помощью фото- и киносъемок и расшифровывали на микрофотометре. Оптическая система создана на базе теневого прибора ИАБ-431 [45]. [c.139]

    Формула (12.95) также может быть рекомендована для вычисления коэффициентов массопередачи в системе жидкость—газ. Более общее выражение, пригодное для аналогичных расчетов в системе жидкость—жидкость, было выведено Броунштейном и Фишбейном [61]. Авторы решали задачу в рамках теории диффузионного пограничного слоя, используя решение гидродинамической задачи, полученное Хамилеком и Джонсоном [54] для интервала изменения значений критерия Рейнольдса О <[ Ке < 80. Распределение концентраций переходящего компонента и хемосорбента в диффузионном пограничном слое описы- . [c.241]

    Если гомогенная реакция идет медленно, то она занимает некоторую конечную толщину пограничного слоя и идет параллельно с диффузией. Условия в слое очень сложные. Этот случай разработали для абсорбции Ван Кревелен и Гофтийзер [109, 110] и дали диаграммы, облегчающие определение скорости диффузии. Ими можно пользоваться также и для экстракции, учитывая гидродинамические свойства системы жидкость—жидкость. [c.70]

    При больших скоростях движения практически весь перепад скорости сосредоточен в тонком гидродинамическом пограничном слое толщиной б 01 а перепад концентрации — в диффузионном пограничном слое толщиной б. Величина б будет различной на разных участках поверхности, являющейся неравнодоступной в диффузионном отношении. То же относится и к толщине гидродинамического пограничного слоя бо- Отношение бо/б тем выше, чем больше отношение кинематической вязкости вещества v к коэффициенту молекулярной диффузии В жидкостях, где v/Z) > 1, диффузионный пограничный слой гораздо тоньше гидродинамического. В этом случае при решении уравнения (III.13) можно воспользоваться достаточно простыми выражениями для скорости потока вблизи твердой поверхности, что позволяет найти аналитическое решение уравнения (III.13) при протекании быстрой гетерогенной реакции или реакции первого порядка на поверхности частиц простой геометрической формы (пластина или шар) [12, 13]. В газах толщины диффузионного и гидродинамического пограничных слоев — величины одного порядка и [c.103]

    Говоря о скорости потока в зернистом слое , часто имеют в виду совершенно различные величины эта неопределенность связана с тем, что имеется несколько уровней и способов усреднения скорости потока. Самое детализированное описание гидродинамики потока дает задание истинных локальных скоростей в каждой точке свободного объема зернистого слоя. Истинная локальная скорость потока обращается в нуль у поверхности твердых частиц. При скоростях потока, обычных для промышленных каталитических процессов, близ твердой поверхности наблюдается резкий перепад скорости, сосредоточенный в тонком гидродинамическом пограничном слое, толщина которого мала по сравнению с характерным размером твердых частиц или промежутков между ними. Поле истинных локальных скоростей близ твердой поверхности определяет скорость иассо-и теплообмена между потоком и поверхностью твердых частиц (см. главу 1П). Влияние распределения истинных локальных скоростей потока близ твердой поверхности на процессы переноса в слое в целом сказывается лишь в том, что участки близ твердой поверхности, где скорость потока близка к нулю, могут играть роль застойных зон , в которых происходит задержка и накопление вещества, распространяющегося по слою с движущимся потоком. Особенно сильные застойные эффекты должны наблюдаться в областях близ точек соприкосновения твердых частиц (рис. VI.4). Эти области эквивалентны узким и глубоким каналам турбулентные пульсации в них не проникают, истинная локальная скорость потока близка к нулю, и перенос вещества осуществляется только с помощью медленного процесса молекулярной диффузии. [c.215]

    В общем случае толщины гидродинамического, теплового и диффузионного пограничных слоев не одинаковы, так как обычно не равны между собой коэффициенты переноса импульса v, тепла а и массы Dr . Аналогия между указанными процессами соблюдается лишь при условпп равенства этих коэффициентов v = а = D . [c.152]


Смотреть страницы где упоминается термин Пограничный слой гидродинамический: [c.98]    [c.215]    [c.220]    [c.23]    [c.159]    [c.185]    [c.112]   
Теория тепло- и массообмена (1961) -- [ c.210 ]

Основные процессы и аппараты Изд10 (2004) -- [ c.47 , c.276 , c.277 ]

Введение в моделирование химико технологических процессов Издание 2 (1982) -- [ c.190 ]

Введение в моделирование химико технологических процессов (1973) -- [ c.99 ]

Явления переноса (1974) -- [ c.129 , c.134 , c.141 , c.341 ]

Основные процессы и аппараты химической технологии Издание 8 (1971) -- [ c.49 , c.290 , c.291 , c.446 ]

Практические работы по физической химии Изд4 (1982) -- [ c.279 ]

Теплопередача Издание 3 (1975) -- [ c.139 ]




ПОИСК





Смотрите так же термины и статьи:

Гидродинамические условия в потоке. Геометрические размеры и характер ограждай,щих поверхностей. Турбулентность и пограничный слой

Гидродинамический и тепловой пограничные слои

Гидродинамический пограничный слой турбулентного потока

Конвективные массоперенос и диффузия. Гидродинамический и диффузионный пограничные слои. Сопоставление теории Нернста с теорией конвективной диффузии

Обобщение гидродинамической теории теплообмена (Рг ф 1). Закономерности турбулентного пограничного слоя. Поправка на влияние ламинарного подслоя Число St и его физический смысл

Обобщение гидродинамической теории теплообмена (РгИ). Закономерности турбулентного пограничного слоя. Поправка на влияние ламинарного под

Пограничный слой гидродинамический диффузионный

Пограничный слой гидродинамический турбулентный

Подобие распределений скорости и температуры в турбулентном пограничном слое продольно обтекаемой пластины и в трубе. Связь между теплообменом и гидродинамическим сопротивлением. Аналогия между процессами тепло- и массообмена. Границы аналогии

Слой пограничный



© 2025 chem21.info Реклама на сайте