Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пограничный слой гидродинамический турбулентный

    Плоская пластина. При течении жидкости (газа) вдоль плоской поверхности (пластины) в пристенной зоне образуется гидродинамический пограничный слой, в пределах которого скорость изменяется от значения оУо на внешней границе до нуля на стенке. На начальном участке пластины, пока пограничный слой тонкий, течение ламинарное. Далее, на некотором расстоянии Хкр от передней кромки пластины течение в пограничном слое становится турбулентным. Условная граница перехода от ламинарного режима течения к турбулентному определяется критическим значением числа Рейнольдса  [c.173]


Рис. 11-6 Гидродинамический и тепловой пограничные слои в турбулентном потоке Рис. 11-6 Гидродинамический и <a href="/info/1856413">тепловой пограничные слои</a> в турбулентном потоке
    Ключевой задачей теории является определение степени затухания коэффициентов турбулентного обмена с приближением к межфазной границе. Недостаточная разработанность теории турбулентности вообще и особенно в применении к системам жидкость—газ не позволяет пока сделать это строго, исходя лишь из гидродинамических соображений. Однако количественная оценка характера затухания возможна на основе надежных экспериментальных данных о зависимости коэффициента массоотдачи от коэффициента молекулярной диффузии. Показатели степени в законе затухания коэффициентов турбулентного обмена и в зависимости к от Оа связаны простым соотношением. Поэтому выявление характера влияния О а на ки по выражению Д. А. Франк-Каменецкого позволяет как бы физико-химически зондировать пограничный слой. В частности, для свободной границы жидкость-газ, как будет показано ниже, многочисленными экспериментальными работами в большинстве практически важных случаев установлена пропорциональная зависимость между к и коэффициентом молекулярной диффузии в степени 0,5. Это соответствует полученным на основании некоторых допущений предсказаниям основанным на квадратичном законе затухания. Доп. пер. [c.101]

    Установлено существование турбулентности у поверхности, являющейся следствием гидродинамической неустойчивости, при которой малые возмущения вызывают конвективные потоки. При этом могут возникать изменения в концентрации реагирующих веществ в пограничном слое. [c.101]

    Проблеме гидродинамической устойчивости ламинарного течения в плоских каналах и трубах с проницаемыми стенками и условиями перехода в турбулентный режим посвящен ряд исследований [1]. Выводы о влиянии отсоса (вдува) на устойчивость пограничного слоя сводятся к следующему в плоском канале отсос стабилизирует течение, повышая критическое число Рейнольдса (рис. 4.6) вдув вначале резко дестабилизирует процесс, однако при параметрах вдува, больших критического, наблюдается слабый рост критического значения числа Рейнольдса Re . Потеря устойчивости ламинарного течения в трубах с проницаемыми стенками имеет особенности в частности, отсос дестабилизирует течение, снижая Re . [c.132]


    Область за пределами гидродинамического пограничного слоя и застойных зон близ точек соприкосновения частиц принято называть ядром потока. Истинные локальные скорости в ядре потока также изменяются в пространстве (в зависимости от локальной геометрии слоя), а при турбулентном режиме течения подвержены и нерегулярным колебаниям во времени. Гидродинамическая картина [c.215]

    Рассмотрены топологические структуры межфазных явлений в гетерофазных ФХС. Обсуждены особенности топологического описания теплового, механического и покомпонентного равновесия фаз. Дано преставление в виде топологических структур связи ряда моделей межфазного переноса двухпленочной модели, модели обновления поверхности контакта фаз, модели диффузионного пограничного слоя, модели развитой межфазной турбулентности. Показано, что диаграммы межфазного переноса с учетом условий равновесия в рамках существующих теорий структурно изоморфны и различаются между собой лишь значениями параметра проводимости и формой его зависимости от гидродинамической обстановки в системе. [c.182]

    Диффузионный перенос вещества из одной фазы в другую происходит через поверхность раздела, образующуюся в месте соприкосновения обеих фаз. Считается, что по ту и другую стороны поверхности раздела образуются тонкие пограничные диффузионные слои, в которых наблюдается резкое изменение концентрации. Движение жидкости внутри пограничного слоя носит ламинарный характер, причем скорость движения возрастает линейно с увеличением расстояния от поверхности раздела. В массе газа или жидкости движение носит турбулентный характер. Здесь преобладает более быстрый процесс конвективной диффузии, что приводит к выравниванию концентраций в направлении, поперечном к иоверхности раздела фаз. Таким образом, в разных зонах той или другой фазы действуют различные механизмы переноса в зависимости от гидродинамических условий.  [c.262]

    Между ядром потока и ламинарным подслоем существует переходная зона, причем ламинарный подслой и эту зону иногда называют гидродинамическим пограничным слоем. Толщина его определяется тем, что напряжения сдвига между частицами жидкости в пограничном слое, обусловленные ее вязкостью и турбулентными пульсациями, а следовательно, значения V и [см. уравнение (И,40)] становятся сравнимыми 1Ю порядку. [c.47]

    Величины а и Or являются аналогами известных из гидроди амики величин кинематической вязкости v и турбулентной вязкости Vp. Численные значения соответственно и а также а и v в общем случае не совпадают, что и обусловливает различие толщин теплового и гидродинамического пограничных слоев ( . епл + б,идр рис. VH-8). Эти слои совпадают по толщине только при v = а. Поскольку отношение v/a представляет собой (стр. 281) критерий Прандтля (Рг -= v/a), то, очевидно, толщина теплового и гидродинамического слоев одинакова только при Рг == 1. Отсюда следует, что при Рг — 1 соблюдается подобие поля температур и поля скоростей, а критерий Прандтля можно рассматривать как параметр, характеризующий подобие этих полей, [c.276]

    Были проведены расчеты для участка, на котором одновременно происходит тепловая и гидродинамическая стабилизация турбулентного потока в трубе. Однако, по мнению авторов, такие решения имеют весьма ограниченную область применения и могут привести к ошибкам. Если труба имеет плавный вход, то возникает тенденция к развитию ламинарного пограничного слоя с последующим переходом к турбулентному течению, причем характеристики теплообмена в этом случае совершенно отличны от тех, которые существуют при формировании турбулентного пограничного слоя сразу же у входа в трубу, как это и принимается во всех подобных решениях. Если во входном сечении кромка трубы острая, то это вызывает отрыв пограничного слоя на входном участке и развитие турбулентности, определяющей значительно большую интенсивность теплопередачи на входном участке, чем это следует из решений, основанных на предположении о развитии турбулентного пограничного слоя. В гл. 7 приведены характеристики, основанные на экспериментальных данных для нескольких типов труб, имеющих острую входную кромку можно полагать, что эти данные гораздо точнее и полезнее при расчете теплообменников, чем имеющиеся аналитические решения. [c.88]

    Прежний критерий начала гидродинамического перехода в динамическом пограничном слое, который использовался, например, в работе [74], основан на определении момента появления высокочастотной компоненты в дискретном возмущении, отфильтрованном ламинарным пограничным слоем. Однако этот критерий для определения начала перехода к турбулентности в газах иногда становится неоднозначным [104]. Поэтому вместо него [c.41]

    В этой связи следует еще указать на отмечавшуюся в работе [И] возможность проявления при некоторых условиях дополнительного механизма влияния поперечного потока вещества, заключающегося при испарении в турбулизации ламинарного пограничного подслоя или подслоя у поверхности раздела фаз и повышении уровня турбулентности в турбулентном пограничном слое или ядре потока смеси. Это влияние поперечного потока не должно вызывать в области малых и больших 1 нарушения аналогии между совместно протекающими в общем гидродинамическом поле процессами тепло- и массообмена, но может приводить к интенсификации обоих этих процессов и нарушению аналогии между ними и чистым теплообменом (не сопровождающимся поперечным переносом массы). Приведенные выше данные показывают, что поперечный поток вещества, незначительный по сравнению с основным продольным потоком газовой (парогазовой) среды даже при интенсивном испарении жидкости, может при определенных условиях оказывать существенное влияние на совместно протекающие процессы тепло-и массообмена и заметно нарушать аналогию между ними. Это не исключает, однако, того, что для других условий, часто встречающихся на практике, можно с достаточной для практических целей точностью принимать приближенно справедливой полную аналогию между указанными процессами. [c.128]


    Введенные здесь соотношения применимы к дозвуковым и сверхзвуковым турбулентным течениям в каналах и в пограничном слое у поверхности обтекаемых тел. В сверхзвуковых потоках, однако, надо учитывать влияние на течение в пограничном слое ударных волн, образующих поверхности разрыва термодинамических и гидродинамических параметров потока (скоростей, плотностей и т. д.) вблизи обтекаемого тела. [c.107]

    В ядре потока X, так как при этом количество теплоты, переносимое турбулентными пульсациями, значительно больше, чем молекулярной теплопроводностью. Очевидно, у стенки = 0. Интенсивность переноса теплоты в ядре потока выражают с помощью коэффициента турбулентной температуропроводности = Х р , который уменьшается но мере приближения к стенке в пограничном слое а., < а, а у стенки = 0. Принимают, что граница теплового пограничного слоя соответствует геометрическому месту точек, для которых = а. Значения и а и V обычно не совпадают, поэтому в общем случае не равны и толщины гидродинамического и теплового пограничных слоев, т. е. 5 ф 5 . Эти слои совпадают лишь при V а. Поскольку отношение м/а по существу представляет собой критерий Прандтля, так как Рг = у/а, то толщины гидродинамического и теплового слоев будут совпадать при Рг 1, т.е. при Рг 1 соблюдается подобие полей температур и скоростей и, таким образом, критерий Прандтля характеризует подобие этих полей. [c.282]

    Гидродинамические особенности турбулентного потока в канале были рассмотрены в гл. 3. Здесь же следует отметить влияние гидродинамических условий на перенос вещества. В пограничном слое толщиной 8 (рис. 15-2) происходит резкое, близкое к линейному изменение концентраций поскольку в этой области потока скорость процесса определяется молекулярной диффузией, роль конвективной диффузии мала. Это объясняется тем, что на границе раздела фаз усиливается тормозящее действие сил трения между фазами и сил поверхностного натяжения на границе жидкой фазы. Образование гидродинамического пограничного слоя вблизи поверхности раздела фаз ведет к возникновению в нем диффузионного пограничного слоя толщиной 5д, обычно не совпадающей с 5 . В ядре потока массоперенос осуществляется в основном турбулентными пульсациями, поэтому концентрация распределяемого вещества в ядре потока практически постоянна. Как отмечалось выше, перенос вещества движущимися частицами, участвующими в турбулентных пульсациях, называют турбулентной диффузией. Перенос вещества турбулентной диффузией описывается уравнением, аналогичным уравнению (15.14а)  [c.16]

    В модели пограничного диффузионного слоя, которую можно считать дальнейшим развитием пленочной модели, отражено влияние гидродинамических условий на процесс массопереноса. По этой модели (рис. 15-3) копцентрация вещества, постоянная в ядре потока, в турбулентном подслое толщиной 5 постепенно снижается при приближении к пограничному слою (т. е. в буферном подслое), в котором соизмеримы молекулярные и турбулентные силы вязкости, т.е. С уменьшением масштаба пульсаций [c.19]

    Аналогия Рейнольдса применима также и к турбулентному ядру потока при любых значениях критериев Рг и 5с, поскольку коэффициенты турбулентного обмена определяются одинаковым масштабом турбулентных пульсаций, значительно превышающим длину свободного пробега молекул. В турбулентных потоках аналогии тепло- и массопередачи рассматривается в приближении гидродинамического и диффузионного пограничных слоев. [c.101]

    В том случае, когда газ распределен в жидкости, т. е. в барботажном гидродинамическом режиме, турбулентность газожидкостной системы еще не велика, но уже при переходе к пенному гидродинамическому режиму быстро наступает режим равномерной или развитой турбулентности. Следует еще раз отметить, что развитая турбулентность отмечается только в ядре потока как правило она не совпадает с турбулентностью в диффузионном пограничном слое. [c.119]

    Как показал В. В. Кафаров [52], при взаимодействии фаз в результате их относительного движения пограничные слои постоянно обновляются за счет турбулентного движения в каждой из фаз. При этом происходит изменение формы и размеров поверхности контакта фаз. Соотношение между молекулярным и конвективным переносом массы определяется гидродинамикой потоков фаз. Поскольку большинство реальных аппаратов работает в области турбулентного движения фаз и характеризуется интенсивным вихреобразованием на границе их раздела, массопередача осуществляется главным образом за счет конвективного переноса и является функцией гидродинамической обстановки в зоне межфазного контакта. [c.108]

    При движении жидкости в каналах и трубах следует различать участок гидродинамически стабилизированного режима движения и входной участок, называемый также участком гидродинамической стабилизации. В пределах этого участка происходит формирование поля скоростей. Если жидкость поступает в канал с постоянной по сечению скоростью, то в пристенных слоях в пределах постепенно утолщающегося пограничного слоя движение жидкости замедляется. Поскольку расход жидкости остается неизменным, это вызывает увеличение скорости движения жидкости в центральной части. В результате профиль скоростей меняется по длине входного участка (рис. П1.1). Границей участка гидродинамической стабилизации является сечение, в котором формируется профиль скоростей, не изменяющийся затем по длине. Длину этого участка г находят, исходя из того, что в конце его толщина пограничного слоя б равна половине диаметра трубы О. Зависимость толщины пограничного слоя от расстояния от входа была рассмотрена в гл. П. Для ламинарного режима движения она выражается уравнением (П.64), а для турбулентного — уравнением (П. 97). Из этих уравнений следует, что отношение 1-г/0 является функцией Ке. Однако для определения длины входного участка уравнения (П. 64) и (П. 97) непосредственно использовать нельзя, поскольку они получены при условии постоянства скорости движения жидкости на наружной границе пограничного слоя. Как было указано, на входном участке это условие не соблюдается. Можно рассчитать значение с учетом изменения скорости [c.184]

    Как было показано выще, процесс переноса теплоты в движущейся жидкости определяется гидродинамической обстановкой. Для турбулентного потока характерно наличие вязкого подслоя, в котором течение определяется преимущественно действием сил вязкого трения, и турбулентного пограничного слоя с развитыми турбулентными пульсациями. За счет этих пульсаций в направлении, перпендикулярном направлению потока, перемещаются макроскопические элементы жидкости, являющиеся носителями энергии. Все процессы переноса в ядре турбулентного потока протекают с большой скоростью. Поэтому определяющую роль играют явления переноса в пристенной области. [c.299]

    Проблема массопереноса к вращающемуся дисковому электро ду за счет конвективной диффузии была решена в работе [339, 341] для случая идеально гладкого горизонтального электрода бесконечного радиуса, вращающегося с постоянной угловой скоростью в бесконечной жидкости при условии ламинарности течения. На практике электрод удовлетворяет этим условиям, если а) радиус диска намного больше толщины гидродинамического пограничного слоя б) все другие поверхности внутри жидкости или снаружи находятся от диска на расстоянии, намного превышающем радиус диска в) неоднородности поверхности диска малы по сравнению с толщиной пограничного слоя г) скорость вращения данного диска меньше критического числа Рейнольдса, при котором возникает турбулентность, или Не = (г со/х )< 10 , где - радиус диска, со - угловая скорость, х - кинематическая вязкость. [c.179]

    Турбулентный режим движения. Согласно распространенным представлениям о турбулентности определяющую роль в процессах переноса в турбулентном потоке играет пограничный слой, прилегающий к границе раздела фаз. По мере удаления от входа в трубу происходит формирование гидродинамического и диффузионного пограничных слоев. На некотором удалении от входа формируется гидродинамически стабилизированный поток, а также происходит стабилизация поля концентраций. Длины участков гидродинамической и концентрационной стабилизации, вообще говоря, разные. Они определяются соответственно значениями коэффициентов кинематической вязкости V и диффузии О. При V = Д профили скорости и концентрации в потоке совпадают. При V ф О скорости и концентрации определяются значением критерия Шмидта Зс = v/D. При 5с > 1, т. е. при V > D, формирование профиля скоростей опережает формирование профиля концентраций. При 5с < 1 между ними имеет место обратное соотношение. [c.86]

    Условно различают центральную зону, или основную массу жидкости, называемую ядром потока, в которой движение является развитым турбулентным, и гидродинамический пограничный слой вблизи стенки, где происходит переход турбулентного движения в ламинарное. [c.47]

    Пограничный слой неоднороден по толщине (рис. 3.9). Зона быстрого изменения концентрации обычно называется диффузионным пограничным слоем при ламинарном течении обтекающего частицу потока или диффузионным подслоем в случае турбулентного течения. Необходимо отметить, что толщина диффузионного пограничного слоя (или подслоя) бд значительно меньше толщины гидродинамического слоя бр и находится в пределах 5-10" —5-10 м (см. рис. 3.9). Известно, что молекулярный механизм переноса целевого компонента будет преобладать над конвективным на расстоянии, меньшем бд от поверхности обтекаемой частицы. Толщина диффузионного пограничного, слоя бд зависит также от величины коэффициента диффузии В. [c.75]

    Наряду с ограничениями, вытекаюш,ими из диаграммы состояния, на устойчивость фронта кристаллизации влияют гидродинамические условия в пограничном слое жидкости. При сильных турбулентных потоках наблюдается потеря морфологической устойчивости. Это происходит, например, при высоких скоростях испарения веш ества из зоны. По-видимому, при суммарном давлении пара соединения, превышающем атм (0.076 мм рт. ст.), в расплаве происходит столь интенсивное перемещение за счет испаряемого материала, что вырастить монокристалл такого соединения можно только тигельными методами. По-видимому, именно этим объясняются результаты экспериментов по получению монокристаллов ряда чистых окислов с помощью лазерного нагрева [10]. [c.224]

    Условия подготовки и формирования водяной струи высокого давления. Дисперсия механической энергии движущегося с большой скоростью потока внутри твердых границ осуществляется молекулярным переносом. Главная часть градиента скорости сосредоточена в пограничном слое. Источниками возмущений в пристеночной области пограничного слоя являются бугорки (выступы) шероховатости, которые усиливают завихренность поступающего потока. Состояние поверхности струеформирующих каналов существенным образом влияет на положение точки перехода ламинарного пограничного слоя в турбулентный, а следовательно, и на гидродинамические характеристики водяной струи [212, 22 З]. С увеличением средней скорости noToj a отношение толщины вязкого подслоя к величине абсолютной шероховатости, являющееся критериальным условием режима течения, снижается тем интенсивнее, чем хуже состояние поверхности. Так, в стволе гидравлического резака диаметром 0,05 м при средней скорости потока 25 м/с с увеличением абсолютной шероховатости с 0,1 до 100 мкм (т. е. в 1000 раз) толщина вязкого подслоя снижается только в 1,5 раза (с 12 до 8 кжм), коэффициент гидравлического трения увеличивается в 2 раза (с 0,011 до 0,023), линейная скорость на границе вязкого подслоя увеличивается в 1,5 раза (с 12 до [c.168]

    С целью проверки пригодности линейной теории гидродинамической устойчивости для описания области перехода ламинарного пограничного слоя в турбулентный были выполнены расчеты для той же области параметров, что и в экспериментах, описаиных в работе [131]. Результаты [131] получены в малошумиой дозву- [c.116]

    Дальнейшее развитие гидродинамическая теория вязкого подслоя получила в работе Шуберта и Коркоса [43, 44]. В ней линеаризованные уравнения Навье — Стокса для пульсаций скорости упрощались за счет того факта, что в области вязкого подслоя отсутствует нормальный градиент пульсаций давления. Шуберт и Коркос положили этот факт в основу линейной теории и на этой основе смогли разрешить многие из отмеченных трудностей в постановке граничных условий. При этом подслой рассматривался как узкая область типа пограничного слоя, реагирующая на турбулентные флуктуации давления, которые создают известную движущую силу для процесса переноса импульса в подслое. Предположение о том, что р(х,у,гх)=р х,хг) (где индекс ш — условие на стенке), позволило учесть условия во внешней части пограничного слоя, связав тем самым процессы эволюции турбулентных возмущений в этих частях пограничного слоя, и в то же время дало возможность ограничиться следующими простыми усло-вия.ми обычные условия прилипания на стенке и требование, чтобы при возрастании у влияние вязкости в решении исчезало. [c.179]

    Как видно из изложенного выше, значительная часть существующих в настоящее время теорий массопередачн (таких как теории проницания и обновления поверхности и их различные модификации) основана на слишком грубых упрощениях и подменяет учет конкретных гидродинамических условий введением не поддающихся расчету и ненаблюдаемых параметров. Перспективной представляется только теория диффузионного пограничного слоя, позволяющая путем физически обоснованных упрощений преодолеть математические трудности, связанные с решением уравнения конвективной диффузии, и разумно родойти к описанию турбулентного режима массопередачи. Несмотря" на [c.183]

    Говоря о скорости потока в зернистом слое , часто имеют в виду совершенно различные величины эта неопределенность связана с тем, что имеется несколько уровней и способов усреднения скорости потока. Самое детализированное описание гидродинамики потока дает задание истинных локальных скоростей в каждой точке свободного объема зернистого слоя. Истинная локальная скорость потока обращается в нуль у поверхности твердых частиц. При скоростях потока, обычных для промышленных каталитических процессов, близ твердой поверхности наблюдается резкий перепад скорости, сосредоточенный в тонком гидродинамическом пограничном слое, толщина которого мала по сравнению с характерным размером твердых частиц или промежутков между ними. Поле истинных локальных скоростей близ твердой поверхности определяет скорость иассо-и теплообмена между потоком и поверхностью твердых частиц (см. главу 1П). Влияние распределения истинных локальных скоростей потока близ твердой поверхности на процессы переноса в слое в целом сказывается лишь в том, что участки близ твердой поверхности, где скорость потока близка к нулю, могут играть роль застойных зон , в которых происходит задержка и накопление вещества, распространяющегося по слою с движущимся потоком. Особенно сильные застойные эффекты должны наблюдаться в областях близ точек соприкосновения твердых частиц (рис. VI.4). Эти области эквивалентны узким и глубоким каналам турбулентные пульсации в них не проникают, истинная локальная скорость потока близка к нулю, и перенос вещества осуществляется только с помощью медленного процесса молекулярной диффузии. [c.215]

    Что касается гидродинамических условий сгорания сферических углеродных частиц, то заслуживают внимания опытные данные Цухановой и Колодкиной [Л. 59 и 27], показавшие, что при неподвижно закрепленных крупных частицах выгорание остается равномерным лишь при сравнительно умеренных скоростях обтекания. В этом случае на всей поверхности углеродного шарика наблюдается наличие тонкой светящейся пленки горящей СО, При увеличении скорости обтекания (> 0,3 -ь0,4 м1сек), как и следовало ожидать, возникает срыв пограничного слоя и догорание в турбулентном следе СО, смытой потоком с лобовой поверхности шарика. Такая обстановка процесса приводит к затормаживанию выгорания частицы в ее кормовой области, практически занятой инертной ПО отношению к углеродной поверхности СО. Таким образом, в случаях значительных скоростей обтекания углеродной частицы активная зона выгорания распространяется лишь на часть ее поверхности, что соответствующим образом снижает среднюю (на всю поверхность) скорость выгорания по сравнению с действительной скоростью в активной зоне горения. На фиг. 19-9 дается синоптическое изображение последовательного выгорания сферических частиц при большой скорости обтекания. [c.204]

    Мы ограничимся здесь рассмотрением пограничного слоя для пластины, клина и конуса. Тогда в пограничном слое везде Я = onst, что приводит к значительному упрощению задачи. В этом случае для плоского течения при Рг = = 1 из соотношений (60,4а) и (60,5а) вытекает, что уравнения (60,13) и (60,14) имеют совершенно одинаковый вид для переменных v, и 0. Положим 7 = onst. Тогда неравенство толщин гидродинамического и теплового пограничных слоев лишено всякого смысла, так как в области вязкого и турбулентного течения оба слоя описываются одинаковыми уравнениями с одинаковыми граничными условиями. Вопрос, таким образом, сводится к интеграции уравнения (60,13), [c.281]

    Процессом растворения управляют, варьируя различными технологическими факторами. Для увеличения скорости растворения можно изменять температурный режим, увеличивать разность концентраций уменьшать вязкость путем измерения гидродинамических условий V предварительно измельчать исходное вещество. Зачастую технологический процесс растворения проводят в реакторах, имеющих рубашку для обогрева паром или охлаждения системы водой или рассолом, и перемешивающее устройство. Перемещивание позволяет перемещать слои жидкости в реакторе, увеличивая разность концентраций и заменяя молекулярную диффузию в жидкой среде на конвектньгй и турбулентный массоперенос. Интенсивное перемешивание уменьшает толщину диффузного пограничного слоя, интенсивный массоперенос способствует быстрому завершению растворения. [c.366]

    На течение жидкости в развитом турбулентном пограничном слое, как и на профиль скоростей при ламинарном, влияют градиенты температуры в пограничном слое, вызывающие изменение вязкости и деформации профиля скоростей. Поэтому распределения скоростей и температур в пограничном слое оказываются взаимосвязанными. Точный расчет представляет большие трудности, поскольку в общем случае гидродинамический и тепловой пограничные слои деформируются по-разному. В связи с этим в расчетные зависимости, получаемые на основании обобщения опытных данных, вводится отношение Ргж/Ргет Для учета влияния направления теплового потока на профиль скоростей. Для расчета значений аор при движении потока вдоль плоской стенки рекомендуется формула  [c.304]

    Аналогия между переносом массы, тепла я механической энергии (количества движения). Сопоставляя рис.. УП-8 и Х-5, можно заметить принципиальное сходство между профилями изменения скоростей, температур и концентраций. Это указывает на то, что в определенных условиях существует аналогия между механизмами переноса массы, тепла в механической энергии. В ядре турбулентного потока, движущегося внутри трубы (канала), при перемешивании под действием турбулентных пульсйций происходит выравнивание скоростей частиц, а в процессах тепло- и массопереноса — выравнивание соответственно температур и концентраций. В пределах же пограничного подслоя, где действие турбулентных пульсаций становится пренебрежимо малым, наблюдается резкое падение скоростей, а также -температур и концентраций. При этом в общем случае толщины гидродинамического, теплового и диффузионного пограничных подслоев не одинаковы. Их толщины совпадают, когда равны величины кинематической вязкое V, коэффициента температуропроводности а и коэффициента молекулярной диффузии О. Как известно, значениям а п Е> пропорциональны соответственно количества переносимых массы, тепла и механической энергии в пограничном слое. Таким образом, аналогия между указанными процессами соблюдается при условия, что = а — О. [c.404]

    Рассмотренный нами ламинарный пограничный слой не охватывает всей совокупности явлений, возникаюш,их у поверхности тел, обтекаемых вязкой жидкостью. При увеличении Ке и толщины пограничного слоя структура его усложняется оставаясь ламинарным непосредственно у стенки, пограничный слой в большей своей части становится турбулентным. Точные решения дифференциальных уравнений турбулентного пограничного слоя еще не разработаны, и для его исследования применяются приближенные методы, основанные на уравнении количества движения. Отличный от ламинарного закон касательных напряжений в турбулентном потоке приводит к иному профилю изменения скоростей в пограничном слое в функции расстояния от стенки, чем это имеет место в ламинарном пограничном слое, и, следовательно, к иной функциональной зави-симосФи коэффициента трения от числа Ке. Однако течение жидкости в турбулентном пограничном слое подчинено тем же граничным условиям, Щ что и в случае ламинарного пограничного слоя. Отсюда, поведение тур- булентного пограничного слоя во многом сходно с Jлaминapным, т. е., обеспечивая обтекание контура тела в области отрицательных градиентов давления, турбулентный пограничный слой в области положительных градиентов давления в некоторой точке затормаживается и приводит к отрыву внешнего потока от контура обтекаемого тела с образованием вихревого гидродинамического следа.  [c.137]

    II область, именуемая пограничным гидродинамическим турбулентным слоем, расположена вблизи стенки трубопровода, где эффекты турбулентного рейнольдсова и вязкого ньютонова переноса сопоставимы, а характер распределения скорости (w(r)) можно аппроксимировать интегрально преобразованным экспоненциально-линейным законом. В зависимости от интенсивности турбулентного и вязкого напряжений здесь целесообразно выде- [c.30]


Смотреть страницы где упоминается термин Пограничный слой гидродинамический турбулентный: [c.98]    [c.277]    [c.13]    [c.138]    [c.98]    [c.14]    [c.70]    [c.23]   
Теплопередача Издание 3 (1975) -- [ c.192 ]




ПОИСК





Смотрите так же термины и статьи:

Пограничный слой гидродинамический

Слой пограничный



© 2024 chem21.info Реклама на сайте