Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физические методы подготовки

    Физические методы подготовки [c.665]

    Показаны перспективы развития техники и технологии физических методов подготовки и переработки газа как составной части комплексного использования углеводородов. Изложены основы тепло- и массообменных процессов и технологии переработки газов. Описаны методы переработки газа, приведена классификация их по глубине извлечения целевых продуктов и сырья. Рассмотрены методы получения холода для низкотемпературной сепарации. [c.2]


    Газовое моторное топливо уже получило распространение на автомобильном и морском транспорте, а также на стационарных двигателях внутреннего сгорания. Использование сжиженных нефтяных газов (пропана, бутана и их смесей) и природного газа в двигателях внутреннего сгорания не требует глубокой химической переработки сырья, а связано с физическими методами их подготовки к применению. [c.125]

    Классические методы весового и объемного анализа не потеряли своего значения. Более того, значение некоторых разделов даже возросло. Так, теория и экспериментальные методы весового анализа часто являются основой методов разделения элементов. Эти методы разделения широко при-)меняются также в физических методах анализа для подготовки вещества. Эти методы имеют также большое значение в технологии редких элементов, при получении чистых веществ и др. Однако даже это расширение значения методов весового и объемного анализа часто не отражается в существующих курсах количественного анализа. Еще менее отражаются в этих курсах такие методы количественного анализа и разделения элементов, как экстракция, соосаждение, хроматография, различные электрохимические и оптические методы анализа. [c.7]

    СПЕКТРАЛЬНЫЙ АНАЛИЗ (эмиссионный)—физический метод качественного и количественного анализа состава вещества, основанный на изучении спектра паров исследуемого вещества. Наличие в спектре характерных линий для данного элемента свидетельствует о присутствии этого элемента в анализируемом веществе (качественный анализ). Интенсивность линий спектров элементов служит мерой концентрации их (количественный анализ). С. а. простой, быстрый, не требует сложной подготовки и большого количества проб. В навеске 10—30 мг можно определить большое число элементов. С. а. чувствителен, его широко используют в химии, астрофизике, металлургии и т. п. С. а. предложен в 1859 г. Г. Кирхгофом и Р. Бунзеном. [c.234]

    Для анализа неорганических веществ используют гравиметрию, титриметрические методы (см. гл. 7), а также физико-химические и физические методы анализа. Чтобы выполнить анализ, составляют рабочую пропись — методику, представляющую собой подробное описание всех условий и операций, которые обеспечивают регламентированные характеристики результатов анализа. В методику анализа входят отбор средней пробы взятие навески (или измерение объема раствора) подготовка пробы к анализу (переведение в требуемое агрегатное состояние, отделение мешающих компонентов или их маскировка, создание нужных условий проведения реакции) способ проведения реакции, включая необходимые реактивы, вспомогательные вещества, посуду и аппаратуру, порядок измерений, а также способ расчета и оценки результатов измерений. [c.204]


    Изложены теоретические основы, а также цели и задачи аналитической химии, теория химических, физико-химических н физических методов анализа. Рассмотрены принципы подготовки пробы к анализу, переведение ее в раствор, определение состава материалов, препаратов, руд, горных пород и анализ объектов окружающей среды. Даны необходимые сведения о новых методах анализа и о методах определения структуры химических соединений. Приведены методы обработки результатов. [c.2]

    В последние годы в связи с механизацией уборки и складирования сахарной свеклы, сопровождающейся значительными физическими повреждениями корней, увеличением количества оставшейся зеленой массы и земли, ухудшающими сохраняемость, технологическое качество свеклы как в СССР, так и за рубежом ухудшилось, а следовательно, ухудшилось и технологическое качество мелассы. Поэтому наряду с конструктивными изменения.мп средств механизации необ.ходимо совершенствовать методы подготовки мелассы такого состава к сбраживанию. [c.29]

    Для подготовки кадров, владеющих методами ИК-спектроскопии, в вузах ввели специальные лекционные курсы Физические методы в химии и Молекулярная спектроскопия . В учебной литературе и лекциях по органической химии уже стало обязательным рассмотрение ИК-спектроскопии. Многие осваивают ее самостоятельно. [c.5]

    Количественный анализ в ТСХ состоит из нескольких этапов подготовка и нанесение пробы на тонкослойную пластинку, разделение (хроматографирование) и проявление компонентов смеси на тонком слое сорбента, качественная и количественная оценка результатов анализа. Количественное определение вещества в пятне может быть одностадийным (по величине пятен с помощью оптических, электрохимических или ядерно-физических методов) и двухстадийным (вещества сначала отделяют от слоя сорбента извлечением растворителями или переводят в газовую фазу, а затем определяют инструментальными методами). [c.33]

    Сегодня уже нет необходимости убеждать широкие круги химиков-органиков в значении таких эффективных физических методов исследования состава и строения сложных химических соединений в малых количествах, как масс-, ИК-, ЯМР-и УФ-спектроскопия. Эти современные методы взаимно дополняют друг друга и, наряду с газовой и жидкостной хроматографией, прочно вошли в повседневную практику большинства химических лабораторий. Дальнейшее, более широкое внедрение этого комплекса методов в нашей стране пока ограничивается, с одной стороны, отсутствием хороших разработок и массового производства достаточно дешевой и точной аппаратуры (за исключением УФ-спектрофотометров), с другой — необходимостью подготовки и переподготовки химиков-органиков, владеющих этими методами. [c.5]

    ПБ 03-440-02. Типовая программа подготовки по ТК и список экзаменационных вопросов приведены в Приложении. Существенной частью аттестации является практический экзамен, который сдают с использованием экзаменационных образцов, соответствующих объектам контро-лям. При разработке программ практического экзамена можно использовать лабораторные работы по ТК, созданные в ряде российских вузов в рамках учебных курсов по специальности "Неразрушающие физические методы контроля". [c.361]

    Для работников топливно-энергетического комплекса - нефтегазовой, атомной и других отраслей, инженерно-технических и научных работников, студентов и аспирантов, специализирующихся в области акустических и других физических методов исследования, а также производственников при подготовке аттестационных экзаменов на право проведения акустического контроля объектов топливно-энергетического комплекса. [c.2]

    Книга предназначена для широкого круга работников топливно-энергетического комплекса и других отраслей народного хозяйства. Она может быть рекомендована студентам, аспирантам, инженерно-техническим и научным работникам, специализирующимся в области акустических и других физических методов исследования, испытаний, неразрушающего контроля и диагностики материалов и конструкций, в частности при подготовке к квалификационным экзаменам на право проведения акустического контроля. Возможно, читатель найдет применение идеям, изложенным в книге, там, где авторам не пришло в голову их искать. [c.7]

    Книга посвящена теоретическим основам аналитической химии неводных растворов, теории и методам кислотно-основного титрования неорганических, органических и элементоорганических соединений в среде неводных растворителей. Особое внимание уделено методам дифференцированного титрования смесей кислот, оснований и солей, которые невозможно оттитровать в водных растворах. В ней описаны методы подготовки растворителей, способы приготовления титрантов и техника титрования неводных растворов. Приводится большой список оригинальной литературы по аналитической и физической химии неводных рох-творов. [c.2]


    Помимо обычных методов подготовки шихты, суш,ествуют еще и специальные, направленные на изменение физических и технологических свойств шихты для улучшения качества кокса и расширения сырьевой базы коксования [c.69]

    Хотя выше мы говорили о недостатках системы подготовки аналитиков-профессионалов, эта система тем не менее обеспечивает основные потребности страны в кадрах высококвалифицированных химиков-аналитиков. Среди специалистов по аналитической химии много кандидатов и докторов химических наук. Есть аналитики кандидаты и доктора физико-математических или технических наук специалисты по эмиссионному спектральному анализу, рентгеновским и ядерно-физическим методам. [c.222]

    Физические методы — магнитные и микроскопические. Магнитным способом можно определить толщину немагнитного или слабо магнитного покрытия на магнитной основе (сталь). С увеличением толщины покрытия увеличивается расстояние между магнитом измеряющего прибора и поверхностью основного металла, а сила притяжения между ними уменьшается. Метод очень чувствителен к чистоте подготовки поверхности основного металла под покрытием. Применяются особые магнитные толщемеры Микроскопическое определение толщины позволяет получать надежные результаты путем прямого отсчета, однако оно требует длительной подготовки и применяется только для арбитражных определений. [c.381]

    Физические и химические методы подготовки поверхности металлов 665 [c.665]

    За последние десять лет произошел существенный сдвиг в применении некоторых физических методов в органической химии. В то время как наиболее сложные и трудоемкие исследования, например с помощью рентгеноструктурного или другого аналогичного метода, по-прежнему могут проводить только специалисты, такие физические исследования, как изучение инфракрасных спектров или ядерного магнитного резонанса, стали достоянием химиков-органиков и проводятся ими с такой же легкостью, как измерения рефракции или оптической активности. То же самое относится и к применению методов квантовой химии для теоретического расчета свойств органических молекул. Вероятно, еще долго сложные расчеты молекул с помощью усовершенствованных методов квантовой химии — различных вариантов теории самосогласованного поля — будут выполняться только специалистами. В то же время обычные расчеты с помощью так называемого простого метода молекулярных орбиталей Хюккеля все больше входят в практику химиков. Действительно, эти расчеты не слишком трудоемки и не требуют специальной математической подготовки. Любой химик может научиться выполнять их без особого труда, тем более что теперь уже не приходится доказывать, какую огромную пользу могут принести результаты таких расчетов, хотя и весьма приближенных, при сопоставлении свойств органических соединений. [c.5]

    Давно уже известно, что конечные свойства лакокрасочного покрытия сильно зависят от вида подложки и ее предварительной подготовки как физическими, так и химическими способами. Подготовка поверхности требует большой тщательности и строгого научного обоснования. Природа покрываемой поверхности, по-видимому, влияет на адгезию лакокрасочной пленки больше, любое другое свойство лакокрасочного покрытия. Если физические методы подготовки поверхности оказываются недостаточными, следует использовать химические методы. При этом, во избежание возможных затруднений, химическую подготовку повер.хностп необходимо обеспечить тщательны.м и квалиф ицированныл контролем. Эти -вопросы рассматриваются в соответствующей г/1аве. [c.13]

    История развития физических методов переработки углеводородных газов началась с использования нефтяного газа. В 20-х годах текущего столетия в США в связи с бурным ростом нефтяной промышленности возникла задача утилизации больших объемов нефтяного (попутного) газа. Первым шагом на пути широкого использования нефтяного газа было комприми-рование. При компримировании получали так называемый газовый бензин, состоящий в основном из пентанов с н( .большими примесями бутанов и вышекипящих. Газовый бензин применялся в качестве компонента автомобильных бензинов и пользовался широким спросом на рынке. С этого nepnoi.a на промыслах стали внедрять закрытые системы сбора и хранения нефти и начали строительство газобензиновых заводов. Назначение газобензиновых заводов состояло в подготовке газа к транспортированию (очистка от механических примес( й и воды, сжатие газа) и получении газового бензина. Период с 20-х по 40-е годы назван эрой газового бензина . [c.5]

    Первая часть учебника включает разделы, посвященные физико-химическим свойствам и классификации нефтей и нефтепродуктов, физическим методам переработки природных углеводородных газов, процессам подготовки нефти к переработке и технологии первичной переработки нефти. Вторая часть посвящена технологии вторичных методов переработки нефти и газа (термических, каталитических и гидрогенизационных), предназначенных для производства различных видов топлив и сырья для нефтехимической промышленности. В третьей части иззп1аются процессы очистки нефтепродуктов с целью, придания им товарных качеств и технология производства специальных продуктов. [c.9]

    Процессы производства минеральных солей разнообразны соответственно огромному ассортименту солей. Однако технологические схемы производства почти всех солей включают типовые процессы, общие для солевой технологии. Типовые процессы солевой технологии измельчение твердых материалов (сырья, спека), обогащение сырья, сушка, обжиг, спекаиие, растворение, выщелачивание, отстаивание, фильтрация, выпаривание, охлаждение растворов, кристаллизация. Эти процессы характерны для любого солевого производства. В технологии солей часто применяются также процессы абсорбции и десорбции. Большинство типовых процессов основано на физических методах переработки, особенно на стадиях подготовки сырья и окончательной доработки продукта. Образование же минеральных солей происходит в результате процессов, основанных на химических реакциях при обжиге, спекании, выщелачивании, абсорбции. Выщелачивание природного сырья (или спеков) сопровождается реакциями обменного разложения. При обжиге идут окислительно-восста-новительные реакции. Хемосорбционные процессы, лежащие в основе синтеза солей из полупродуктов химической промышленности, сопровождаются реакциями нейтрализации. [c.141]

    Характерная особенность физических методов анализа заключается в том, что в них непосредственно измеряют какие-либо физические парЗл1етры системы, связанные с количеством определяемогэ элемента, без предварительного проведения химич ской реакции. Это не означает, однако, что при определении элементов физическими методами химические реакции совершенно не происходят. Разложение пробы и подготовку вещества к анализу нередко прово>1ят с помощью [c.29]

    Помимо тер.мообработки существуют в нашей стране методы снятия остаточных, сварочных напряжений при гидравлических испытаниях повышенным давлением и послесварочной взрывной обработкой. 100% сварных соединений установок подготовки газа подвергаются контролю просвечиванием рентгеновскими или гамма-лучами для обнаружения дефектов до обработки и снятия остаточных сварочных напряжений и 20%—с выборочным дублированием после обработки (в этом случае контроль допускается любыми физическими методами). [c.177]

    Спектральный анализ (эмиссионный) — физический метод качественного и количественного анализа состава вещества на основе изучения спектров. Оптический С. а. характеризуется относительной простотой выполнения, экспрессностью, отсутствием сложной подготовки проб к анализу, незначительным количеством вещества (10—30 мг), необходимого для анализа на большое число элементов. Спектры эмиссии получают переведением вещества в парообразное состояние и возбуждением атомов элементов нагреванием вещества до 1000—10 000°С. В качестве источников возбуждения спектров прп анализе материалов, проводящих ток, применяют искру, дугу переменного тока. Пробу помещают в кратер одного из угольных электродов. Для анализа растворов широко используют пламя различных газов. Качественный н полуколичественныйС. а. сводятся к установлению наличия или отсутствия в спектре характерных линий и оценки по их интенсивностям содержания искомых элементов. Количественное определение содержания элемента основано на Эмпирической зависимости (при малых содержаниях) интенсивности спектральных линий от концентрации элемента в пробе. С. а.— чувствительный метод и широко применяется в химии, астрофизике, металлургии, машиностроении, геологической разведке и др- МетодС. а. был предложен в 1859 г. Г. Кирхгофом и Р. Бунзеном. С его помощью гелий был открыт на Солнце ранее, чем на Земле. Спектроскопия инфракрасная — см. Ифракрасная спектроскопия. Спектрофотометрия (абсорбционная)—физико-химический метод исследования растворов и твердых веществ, основанный на изучении спектров поглощения в ультрафиолетовой (200—iOO нм), видимой (400—760 нм) и инфракрасной (>760 нм) областях спектра. Основная зависимость, изучаемая в С.,— зависимость интенсивности поглощения падающего света от длины волны. С. широко применяется при изучении строения и состава различных соединений (комплексов, красителей, аналитических реагентов и др.), для качественного и количественного определения веществ (определения следов элементов в металлах, сплавах, технических объектах). Приборы С.—спектрофотометры. [c.125]

    Флотационные фабрики изменят свой облик в связи с освоением новых типов флотационных машин пневмомеханических, эжекторных, пенной сепарации и др. При флотации будут применяться электрохимические методы подготовки пульпы. Появятся новые селективные реагенты. Получат широкое применение физические (радиоактива ционные, ультразвуковые и др.) воздействия на минералы, воду, растворы реагентов, а также активирующие прилшание воздушных пузырьков к минеральным частицам, что интенсифицирует процесс флотации. [c.127]

    Найдут широкое применение различные методы подготовки руды, пульпы i реагентов к флотации путем физических воздействий (фотонное и радиоактивное облучение, ультразвуковые воздействия и термическая обработка). Термическа обработка руды н отдельных случаях позволяет улучшить покааатели флотации Предварительный обжиг применяют для кар.бонатнЫх марганцевых руд и жел ваковых фосфоритов [25]. , [c.132]

    Бром часто определяют в различных объектах методами оптической спектроскопии, рентгеноспектрального анализа, масс-спектрометрии, активационного анализа, радиохимии и энталь-шшетрии. Многие из них не требуют сложной подготовки проб к анализу (и поэтому экспрессны), имеют высокую чувствительность и, наконец, позволяют одновременно определять ряд элементов, мешающих друг другу в химическом анализе. Учитывая этп преимущества физических методов, а также бурное развитие и совершенствование инструментальной техники в наш век, можно ожидать, что роль физических методов в аналитической химии брома будет стремительно возрастать. [c.145]

    Предлагаемая вниманию советского читателя книга Силь-верстейна, Басслера и Моррила Спектрометрическая идентификация органических соединений , вышедшая за рубежом третьим изданием, до сих пор остается лучшей в мировой литературе. Книга полезна для химиков-органиков любой квалификации. Ею можно пользоваться при самообучении, не имея специальной подготовки в области спектроскопии. Для студентов она — отличное учебное пособие по таким лекционным Курсам, как Физические методы в органической химии или Идентификация органических соединений . В повседневной работе химиков, уже освоивших спектральные методы, это превосходное справочное издание. [c.5]

    Казалось бы естественным изучение фазового состава основывать главным образом на исследовании микроструктуры смеси полимеров. Прямое исследование микроструктуры в световом (фазово-контрастном) или электронном микроскопе при современных методах подготовки образцов дает интересную информацию о структуре смеси [2, 3, 77, 78, 80, 84, 85, 88—90, 155 165 и др.]. Этот метод дает также информацию, которую вообще нельзя получить другими методами. Но метод имеет и свои недостатки, самый основной из которых обусловлен высокомолекулярной природой полимеров. Если в смеси полимеров размер частиц дисперсной фазы составляет, например, 100— 150 А, то это могут быть либо действительно частицы второй фазы, либо такие микронеоднородности, которые свойствами фазы не обладают. Действительно, одна макромолекула, свернутая на себя, имеет размер указанного порядка. Если полимеры совместимы и произошло диспергирование до отдельных макромолекул, то под микроскопом такие макромолекулы могут выглядеть как частицы второй фазы, даже если произошло самопроизвольное растворение одного полимера в другом. В истинных растворах низкомолекулярных веществ обычно происходит ассоциация однородных молекул. Если макромолекулы образуют ассоциат еще до возникновения новой фазы, то он может иметь размеры обычных коллоидных-частиц. Поэтому наличие микронеоднородности, видимой в микроскоп, не есть еще однозначное подтверждение наличия двухфазной структуры система двухфазна тогда, когда свойства частички идентичны свойствам большого объема материала дисперсной фазы. В сущности такой подход следует из определения Гиббса. Так, в книге Киреева ([166], стр. 232) сказано Фаза — совокупность всех гомогенных частей системы, одинаковых по составу и по всем химическим и физическим свойствам (не зависящим от количества вещества) и отграниченных от других частей системы некоторой поверхностью (поверхностью раздела) . [c.35]

    Расширение в учебнике материала по физико-химическим и физическим методам (эмиссионной пламенной фотометрии, снектрофотомет-рии, атомно-абсорбционной спектроскопии, потенциометрии, иономет-рии, радиометрии, хроматографии) будет способствовать улучшению химической подготовки специалистов. [c.3]

    Ядерно-физические методы нашли применение на горно-обогатительных и других предприятиях. Среди них рентгенорадиометрический, гамма-гамма-методы. Так, на Чимкентском свинцовом заводе свинец в промежуточных продуктах определяют реитгено-радиометрическим методом. Без специальной подготовки образца результаты анализа можно получить за 2—3 мин это позволяет оперативно вмешиваться в ход плавки, проводить анализ непосредственно у печи. [c.149]

    Большинство исследователей при определении микропримесей металлов в нефти и нефтепродуктах отдают предпочтение современным инструментальным физическим методам [14—22, 31], вместе с тем традиционные химические и физико-химические методы также по-прежнему широко применяются. Это, вероятно, обусловлено тем, что во многих практических приложениях в нефтепродуктах требуется находить один, два, максимум три элемента. Поэтому, несмотря на то, что для выполнения конечных определений химическими или большинством физикохимических методов необходимы предварительная обработка образца и сложная подготовка пробы, из-за простоты аппаратурного обеспечения уровень использования этих методов остается высоким, ведутся работы по их дальнейшему развитию и совершенствованию. Этот вывод подтверждается приведенным в данной главе обзором работ, посвященных применению химических и физико-химических методов для определения микроэлементов в нефти и нефтепродуктах. При этом предварительно рассмотрены общие для всех методов анализа вопросы пробоподготовки, разложения органического вещества, возможного загрязнения проб неконтролируемыми примесями и т. д. [c.21]

    Во время подготовки рукописи к изданию вышла из печати книга И. Н. Плаксина и Л. П. Старчика Ядерно-физические методы контроля вещественного состава (М., Наука , 1966). В ней рассматриваются многие важные аспекты активационного анализа применительно к использованию его в качестве инструментального метода определения вещественного состава руд и продуктов их переработки. [c.4]

    Из того, что сказано в этой части книги, видно, какое огромное роистине революционизирующее влияние на развитие аналитической органической химии, а тем самым и всей органической химии оказали современные физические методы исследований. Совершенно очевидно, что они на некоторых участках аналитического исследования вытеснили, а на других продолжают теснить химические методы. Приведет ли этот процесс к полному изгнанию из аналитической органической химии этих методов Этот вопрос не раз обсуждался в печати. Указывалось, например, на то, что по-настоящему универсального (физического) метода структурного анализа ие открыто и на пути современных способов подхода к решению структурных проблем встречаются подводные рифы, еоли исследование ведется узким фронтом и предпочтение отдается одному какому-либо спектроскопическому методу , и что в случае сложных природных соединений исследования физическими методами и теоретические соображения должны быть дополнены деструктивным структурным анализом и в качестве последней решающей инстанции, подтверждающей все прежние выводы, — синтезом [56, с. 230]. Не в этом ли ценность занявших столько лет труда знаменитых синтезов Вудворда и, в частности, синтеза витамина В12 Терентьев указал на другую сторону того же вопроса о взаимоотношении физических и химических методов анализа. Эти методы дополняют друг друга хотя бы потому, что исследуемое вещество должно быть сначала подготовлено для анализа. Пример для того чтобы подвергнуть данное вещество спектрополяриметрическому изучению, в нем должна быть проведена химическим путем избирательная модификация определенной функциональной группы (метод меток, о котором шла речь в гл. XI, 3). Иногда химический метод может дать ответ быстрее, чем требуется времени на специальную подготовку [c.319]

    В области неорганической биохимии уже опубликован прекрасный двухтомный труд и, несомненно, в стадии подготовки находятся и другие публикации. Такие исчерпывающие работы, безусловно, необходимы. Имея в виду общие задачи, поставленные при издании серии книг Аспекты неорганической химии , при подготовке данного тома материал был отобран таким образом, чтобы исследователи, работающие в области неорганической биохимии, могли найти в нем, во-первых, изложение основных вопросов биохимии железа и молибдена, во-вторых, сведения о некоторых физических методах, которые в настоящее время применяются в бионеорга- [c.8]

    Большинство типовых процессов основано на физических методах переработки, особенно на стадиях подготовки сырья и окончательной доработки продукта. Образование же литеральных солей происходит в результате процессов, основанных на химических реакциях при обжиге, спекании, выщелачивании, абсорбции. Выщелачивание природного сырья (или спеков) сопровождается реакциями обмендаго разложения. При обжиге идут окислительно-восстановительные реакции. Хемосорбционные процессы, лежащие в основе синтеза солей, сопровождаются реакциями нейтрализации. [c.361]

    Физические методы контроля качества сварных стыков заключаются в просвечивании их рентгеновским или гамма-излучением. К этой работе и обращению с радиоактивными элементами дсшускаются только лица, прошедшие специальную подготовку и медицинское обследование. [c.34]


Смотреть страницы где упоминается термин Физические методы подготовки: [c.154]    [c.154]    [c.35]    [c.403]    [c.120]    [c.62]    [c.3]   
Смотреть главы в:

Коррозия и защита от коррозии -> Физические методы подготовки




ПОИСК





Смотрите так же термины и статьи:

Методы физические



© 2025 chem21.info Реклама на сайте