Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свободные радикалы расщепление

    Химические свойства. Наиболее характерные для алканов реакции замещения (галогенирование, нитрование, сульфирование) протекают по радикальному механизму (5 ). Для реализации этих реакций требуются достаточно жесткие условия так, образование свободного атома или свободного радикала происходит, например, при термическом расщеплении молекулы одного из исходных веществ. [c.321]


    При фотолитическом расщеплении могут образоваться две меньшие молекулы или два свободных радикала (разд. 7.7) образование двух ионов наблюдается крайне редко. Свободные радикалы, образующиеся при фотолизе, ведут себя так же, как и свободные радикалы, полученные любым другим путем (гл. 5), за исключением тех случаев, когда они находятся в возбужденном состоянии. [c.311]

    Радикальные реакции крекинга. Свободно-радикальный механизм гомогенных реакций термического крекинга парафиновых углеводородов разработан Райсом и сотр. [300]. В основе этого механизма лежит предположение, что молекула парафина путем отрыва атомов водорода превращается в свободный радикал. Вероятности образования радикалов при разрыве С —Н-связи у первичных, вторичных и третичных атомов углерода при 500° С находятся между собой в соотношении 10 3 1. Затем каждый радикал либо подвергается Р -расщеплению, либо отнимает атом водорода у другой нейтральной молекулы и рекомбинируется. В качестве примера в уравнении (74) показаны пути превращения н-бутильного радикала. Как и у карбониевых ионов, судьба каждого радикала определяется относительными скоростями переноса водорода и крекинга, т. е. соотношением / [КН]/Агр, где — константа скорости переноса водорода, а А ,) — константа скорости Р-расщепления. При температуре 500° С и давлении. RH, равном 1 атм, это соотношение значительно меньше 1 для всех радикалов, способных путем р-расщепления превращаться в третичные, вторичные и даже первичные радикалы. Однако, если превращение радикала должно сопровождаться отрывом метильного радикала или атома водорода, реакция переноса водорода успешно конкурирует с Р-расщеплением. [c.111]

    Гетеролитическое расщепление нейтральной молекулы включает ее разрыв на два противоположно заряженных фрагмента. Если разрыв происходит с разрушением только ковалентной связи, образуются два свободных радикала, не имеющие заряда. Если же один из фрагментов при разрыве захватывает два электрона, образующиеся частицы приобретают электрический заряд и составляют ионную пару  [c.17]

    Действие сил растяжения вдоль оси молекулярной связи К1—Кг проявляется в ослаблении кажущейся энергии ее образования и, таким образом, способствует увеличению вероятности разрыва связи. Если ослабление кажущейся энергии связи существенно, то механическое воздействие можно считать основной причиной деструкции цепи. Поскольку разрыв цепной молекулы сопровождается образованием органических радикалов, а последующее появление неспаренных свободных электронов регулируется механическими силами, то изучение процесса образования радикалов и их реакций дает необходимую с точки зрения молекулярной теории информацию относительно сил, действующих па цепь. Исследования свободных радикалов методом парамагнитного резонанса усиленно развивались в течение последних 30 лет [1, 2]. С тех пор данный метод успешно применялся для объяснения механизма образования свободных радикалов в химических реакциях и под действием облучения видимым и ультрафиолетовым светом, рентгеновским и 7-излучением и облучением частицами [1, 3]. Дополнительно изучались величина фактора спектроскопического расщепления магнитное окружение неспаренного спина свободных электронов и структура свободного радикала. Во всех этих случаях спин свободного электрона действует как зонд, который, по крайней мере временно, присоединяется к определенной молекуле, принимает участие в ее движении и взаимодействует с окружающим магнитным полем. [c.156]


    Сверхтонкая структура спектров ЭПР. В состав радикала часто входят атомы, обладающие ядерным магнитным моментом, например атомы водорода. Магнитный момент неспаренного электрона взаимодействует с магнитными моментами ядер. В результате такого взаимодействия происходит расщепление линий ЭПР-спектра, т. е. появляется так называемая сверхтонкая структура (СТС) спектра ЭПР. Это позволяет по спектру ЭПР идентифицировать структуру свободного радикала. Например, ЭПР-спектр метильного радикала вследствие взаимодействия магнитного момента электрона с тремя эквивалентными ядерными магнитными моментами атомов водорода [c.298]

    Так, если вблизи резонирующей частицы в составе той же молекулы или свободного радикала находится ядро с 5 =5 О, то в зависимости от ориентации спина этого ядра локальное поле может принимать 25 -г 1 различных значений, соответствующих возможным ориентациям спина. В таком случае вместо одной линии в спектре магнитного резонанса будет наблюдаться 23 Ч- 1 лини . Такое расщепление сигнала магнитного резонанса в результате действия магнитного поля соседнего ядра получило название сверхтонкого расщепления сверхтонкой структуры, СТС). [c.42]

    Расщепление связи хлор — хлор происходит таким образом, что каждый атом хлора сохраняет один электрон из пары, за счет которой была образована ковалентная связь. Этот неспаренный электрон не имеет партнера со спином противоположного направления, как все другие электроны атома хлора (разд. 1.6). Атом или группа, имеющие нечетный (неспаренный) электрон, называется свободным радикалом. При написании свободного радикала обычно пишут точку для обозначения неспаренного электрона, так же как пишут знак плюс или минус при обозначении иона. [c.46]

    Задача 13.21. В каждом из следующих случаев укажите, какой свободный радикал ответствен за ЭПР-спектр, и покажите, как возникает наблюдаемое расщепление, а) Облу- [c.433]

    Таким образом, по числу компонент расщепления (тонкая структура спектра) можно установить природу свободного радикала, его строение, распределение спиновой плотности по молекуле. Одновременно спектроскопия ЭПР позволяет контролировать условия возникновения радикалов, определять их концентрацию (вплоть до 10" моль). [c.130]

    Линии ЭПР испытывают сверхтонкое расщепление вследствие локального поля, создаваемого магнитными моментами ядер. Так, ядро N имеет У = 1, и, следовательно, проекции ядерного спина на направление поля отвечают значениям магннтного квантового числа m = 1, О, —1. Локальное поле, действующее на электрон свободного радикала, находящегося вблизи ядра N, имеет три значения и пик ЭПР расщепляется в триплет. [c.172]

    При повторении подобных актов образуются сшитые макромолекулы. Естественно, что с понижением температуры полимеризации относительная роль реакций передачи цепи на полимер заметно падает. Отметим, что для макромолекул, активированных вследствие передачи на полимер, возможна еще одна реакция — расщепление цепи главных валентностей с образованием нового свободного радикала и укороченной ненасыщенной макромолекулы  [c.250]

    Выходы продуктов с разбивкой по углеродным числам показаны в табл. 7 как для этого случая, так и для случая, когда до превращения свободного радикала в парафиновый углеводород расщепление происходит 3 или 4 раза. [c.76]

    Радикальное расщепление вызывает появление нового углеродсодержащего свободного радикала, способного реагировать с присутствующими молекулами. Такие реакции приводят к замещениям, механизм которых отличен от тех, которые рассматриваются в разд. 15.4. [c.418]

    Высказано предположение, что катодное расщепление связи С—О не может протекать по механизму 5 1, а наиболее вероятно протекает через промежуточную стадию свободного радикала или по механизму S]Y2. Полярографически активными являются эфиры ароматических кислот как с алифатическими, так и с ароматическими спиртовыми остатками. Эфиры ароматических кислот восстанавливаются в метиловом спирТе, содержащем в качестве электролита четвертичные соли аммония [85], или в апротонных средах, например в диметилформамиде [84]. Предполагается, что при электролизе спиртовых растворов восстановление протекает под действием радикалов тетраалкиламмония, адсорбированных на поверхности ртутного катода. В растворах диметилформамида эфирная связь расщепляется в результате прямого переноса электронов. [c.260]

    Когда свободный радикал образуется не на твердой поверхности, а в растворе, в его ЭПР-спектре, так же как в спектрах ЯМР, удается наблюдать расщепление [c.333]

    МГц, а в триплете — на 0,50 МГц. а) Какова наиболее вероятная структура этого свободного радикала и каков путь его образования б) Объясните, почему расщепление в квартете оказывается больше, чем в триплете (см. разд. 22-5,Д). [c.366]

    Некоторые авторы [236, 237] связывают быструю потерю не-насыщенности при высокотемпературном окислении олефинов с возможностью гомолитического расщепления перекисей с образованием свободного радикала гидроксила  [c.71]


    В этом случае четыре протона полностью эквивалентны. При уменьшении pH равновесие смещается в сторону нейтрального радикала (формы В и С на рис. 9-14). Формы В и С термодинамически эквивалентны. В концентрированной серной кислоте наблюдается только катион-радикал (форма О на рис. 9-14 см. также рис. 4-34). Спектр ЭПР нейтрального свободного радикала был приведен ранее на рис. 4-33. Однако в водном растворе между формами В и С происходит быстрый обмен через формы А и б. Прямой переход от В к С можно исключить как маловероятный процесс, так как не наблюдается сверхтонкого расщепления на протоне ОН-группы. Это показывает, что доминирующий процесс — обмен протонами с растворителем. Для объяснения спектров на рис. 9-13 прежде всего отметим, что протоны 2 и 6 в формах В и С, а также протоны 3 и 5 полностью эквивалентны. Однако протоны, принадлежащие разным парам (2, 6 и 3, 5), не полностью эквивалентны. Предполагаемый механизм приводит к модуляции сверхтонкого расщепления в противофазе. Таким образом, этот случай относится к тому же типу, что и пример, показанный на рис. 9-12, поскольку две пары полностью эквивалентных протонов можно рассматривать как аналоги двух ядер со спином 1. Единственная разница в том, что каждая из линий вырождена. Выражения для ширины линий идентичны. [c.226]

    И в этом случае подведение энергии в виде ультрафиолетового света вызывает расщепление молекулы хлор13 на атомы. Атомы хлора связывают атом водорода из молекулы углеводорода, образуя алкильный свободный радикал и хлористый водород. Алкильный радикал в свою очередь взаимодействует с молекулой хлора, образуя молекулу хлористого алкила и атом хлора. [c.140]

    Крекинг парафиновых и циклопарафиновых углеводородов можно рассматривать как реакцию деалкилирования и механизм его — как механизм,обратный механизму реакции алкилирования. Основной реакцией каталитического крекинга является разложение иона карбония на меньший ион карбония и олофин (правило 2), тогда как для термического крекинга основной реакцией является разложение свободного радикала на меньший радикал и олефин (правило 2 ). В обоих случаях имеет место расщепление связи С—С в бета-положении с образованием трехвалентного атома углерода. Вследствие существенных различий в поведении ионов карбония и свободных радикалов продукты каталитического и термического крекингов заметно отличаются друг от друга. Например [17], при jtpeKHHre гексадеканов в присутствии алюмосиликатных катализаторов [c.235]

    Влияние природы растворителя на спектр ЭПР может быть объяснено механизмом [136], учитывающим возникновение слабых обменных взаимодействий при столкновении молекул в растворе. При сближении двух парамагнитных частиц обменное взаимодействие между ними может вызвать нарушение фазы ларморовых вращений спинов вокруг внешнего магнитного поля. В работах [ 137 -139] показано, что в полярных растворителях ширина сверхтонких компонент меньше, а константа сверхтонкого расщепления больше, по сравнению со значениями констант в неполярных растворителях. Этот эффект приписан возникновению комплексов радикал — растворитель. Образование комплексов свободный радикал — растворитель может быть обусловлено различными причинами, в частности водородной связью [ 138]. В ряде случаев возможно также образование молекулярных комплексов с растворителем, акцепторами, ионами металлов. Последние нередко приводят к стабилизации ион-радикалов [140, 141]. Авторы [141] считают, что молекулы растворителя локализуются на полярных заместителях или гетероатомах. [c.120]

    В качестве примера рассмотрим спектр поглощения свободного радикала НСО. Наблюдалась прогрессия полос, похожих па полосы двухатомных молекул, с расстояниями между ними около 1500 см" . На рис. 99 приводится спектрограмма одной из полученных полос, на которой отчетливо видны Q- и 7 -ветви. Дублетное расщепление, соответствующее спину 5 = /2, не разрешено, так как линии широкие по самой своей природе. Простая структура полосы, казалось бы, говорит о том, что радикал линеен как в BepxnisM, так и в нижнем состоянии. Однако был обнаружен большой комбинационный дефект между Р-, Q- и / -ветвями, который может быть объяснен только как следствие асимметрического удвоения в нижнем состоянии. Другими словами, необходимо сделать вывод, что молекула изогнута в нижнем состоянии и является, таким образом, почти симметричным волчком. При таком объяс- [c.171]

    Однако металлорганические соединения могут претерпевать и гемолитическое расщепление с образованием свободных радикалов — особенно при повышенных температурах и в присутствии соединений металлов переменной валентности [56]. Гемолитическое расщепление металлорганического соединения, адсорбированного на твердой поверхности, ведет к одновременному образованию свободного радикала, который переходит в раствор, и связанного радикала, соединенного с поверхностью катализатора. Связанные радикалы на поверхности катализатора могут образоваться также вследствие того, что металлы переменной валентности переходят в состояние нечетной валентности, когда в них присутствуют непарные й-электроны. Следовательно, металлы в состоянии нечетной валентности (если они не связаны попарно в кристаллическом состоянии) фактически представляют свободные радикалы, заключенные в структуре твердого катализатора. Непарные металлические ионы нечетной валентности присутствуют, в частности, в дефектных участках кристаллической решетки твердого вещества. Присутствие непарных ( -электронов доказывается полупроводимостью окпснометаллических катализаторов. [c.297]

    Анализируй сверхтонкое расщепление в спектре свободного радикала, можно получить значительную структурную информацию. Если наше обсуждение ограничить на данном атапе углеродными радикалами, не содержащими гетероатомов, то число линий указывает Ега число взаимодействующих протонов, а но величине растепления, которую определяют пз константы сверхтонкого расщепления а, измеряют плотность неспарениого электрона на Ь-орбитали атома водорода. Согласно соотношению МакКоннела [2  [c.451]

    В качестве простого примера сверхтонкого расщепления рассмотрим свободный радикал с двумя протонами, в различной степени влияющими на электронные уровни энергии в магнитном поле. На рис. 16.9 показано влияние двух протонов на возможные уровни энергии электрона. В присутствии магнитного поля неспаренный электрон имеет два уровня энергии с/Пй== + 72 и /Из=— /г- Два протона расщепляют эти уровни так, что в результате неспаренный электрон имеет восемь уровней энергии. В электронном парамагнитном резонансе происходит переворачивание электронного спина, однако направление ядреных спинов не изменяется. Таким образом, в ЭПР электрон, поглощая энергию, переходит с энергетического состояния в нижней группе гпе= 42) на соответствующий уровень в верхней группе (тз= + 7г)- При увеличении напряженности магнитного поля последовательно выполняются условия резонанса для четырех переходов. Соответственно наблюдаются четыре линии в ЭПР-спектре. Поскольку четыре ядерно-спиновых состояния (а а2, Рг, 1З1С12 и Р1Р2) равновероятны, эти четыре линии имеют одинаковую интенсивность. Сверхтонкие расщепления а и Сг могут быть определены из спектра, как это показано на рисунке. [c.512]

    С точки зрения влияния растворителей наибольший интерес представляют три параметра спектра электронного парамагнитного резонанса (ЭПР) органического радикала — gf-фактор радикала, константа изотропного сверхтонкого расщепления (КСТР) от любого ядра в изучаемом радикале с отличным от нуля спином, ширина различных линий в спектре [2, 183—186, 390]. Величина g -фактора определяется напряженностью магнитного поля, при которой неспаренный электрон свободного радикала вступает в резонанс с постоянной частотой спектрометра ЭПР (обычно равной 9,5 ГГц). Константа изотропного СТР связана с распределением спиновой плотности я-электро-на (называемой также населенностью спина) в я-радикалах. Ширина линий связана с зависящими от температуры динамическими процессами, например с внутримолекулярным вращением или переносом электрона. Несколько вполне современных обзоров, посвященных изучению органических радикалов в растворах, опубликовано в сборнике [390]. [c.457]

    Широкое исследование расщепления связи углерод — галоген проведено Элвингом и сотр. [5]. Авторы начали с изучения галоге-нированных карбоновых кислот. Полученные результаты подтверждают обобщение, приведенное выше, за исключением того, что для кислот с увеличением длины цепи восстановление облегчается. В дополнение к предложенной схеме свободный радикал — карб-анион Элвинг предложил еще два механизма. Один из них включает гетерогенный процесс по типу 5м2, в котором электрод служит нуклеофильным агентом. Для осуществления атаки молекула должна приблизиться к электроду стороной, противоположной связи углерод — галоген. Эта реакция должна включать стадию, указанную в уравнении (7.4), за которой следует стадия, подобная реакции (7.3)  [c.195]

    Один из возможных путей исчезновения кетениминных структур, сопровождаемый уменьшением молекулярного веса, заключается в расщеплении связи углерод — азот основной цепи с последующей перегруппировкой аномального свободного радикала в нормальный, который затем [c.55]

    Основываясь на данных по составу продуктов и относительным скоростям крекинга других углеводородов, содержащих различное число первичных, вторичных и третичных водородных атомов, Гринсфельдер, Водж и Гуд [37] предложили теорию, объясняющую действие катализатора. Авторы считают, что углерод реагирует с углеводородом с удалением из последнего водородного атома и что скорости отщепления первичных, вторичных и третичных водородных атомов подчиняются тем же правилам, какие были предложены Косяковым и Райсом [62] для скоростей образования соответствующих радикалов при термическом крекинге. Было высказано предположение, что при крекинге над активированным углем образовавшийся радикал связывается с поверхностью катализатора (углерода) и таким образом исключается возможность протекания цепных реакций в паровой фазе, сопровождающихся образованием обычных продуктов термического крекинга. При расщеплении радикала по р-связи образуются а-олефиновый углеводород нормального строения и первичный свободный радикал. Предполагается, что последний, получая водород с поверхности катализатора, быстро превращается в насыщенный углеводород. На основе этих простых наблюдений были объяснены скорости и продукты крекинга пяти изомерных гекса- [c.456]

    Теория свободных радикалов, разработанная Райсом [18—20], позволяет также объяснить состав продуктов термического крекинга углеводородов, в частности парафиновых, которые здесь и будут рассмотрены. Предполагается, что первой стадией реакции является отнятие алкильным радикалом атома водорода от молекулы парафинового углеводорода. Образующийся в результате большой радикал быстро распадается. Поскольку прочность связи С — С значительно меньше, чем связи С — Н, расщепление всегда происходит именно по связи С — С. На конечной стадии образуется небольшой свободный радикал, продолжающий реакционную цеиь. Принимаются следующие дополнительные допущения. [c.59]

    На основании теории свободных радикалов, разработанной Райсом и Косяковым, можно вычислить состав продуктоа, образующихся при крекинге парафиновых углеводородов, Ниже приводится пример использования этой теории для вычисления относительных выходов продуктов термического крекинга цетана (и-гексадекана) при 922 К. Одним из параметров процесса является соотношение степеней а) разрыва связей С — С в первоначально образующемся большом свободном радикале и б) превращения последнего в парафиновый углеводород в результате отщепления атома водорода. С повышением давления вероятность отщепления водорода (бимолекулярный процесс) увеличивается по сравнению с расщеплением (мономолекулярный процесс). Приводимые ниже вычисления поясняют метод расчетного определения выходов продуктов в зависимости от увеличения числа стадий разложения большого свободного радикала до момента его стабилизации в результате отщепления водорода. [c.74]

    Боланд и Купер [18] показали, что при облучении в спиртовом растворе антрахинон-2,6-дисульфонат-ион отрывает атом водорода от а-углерода молекулы спирта. При этом образуются радикал красителя типа семихинона и радикал спирта. В дальнейшем Бридж и Портер [24] показали, что отрыв-атома водорода является первичным актом реакции. Краситель регенерируется в результате реакции с молекулярным кислородом, а свободный радикал субстрата-растворителя в дальнейшем окисляется до радикала перекиси, промежуточной между альдегидом и кислотой [см. уравнение (3)]. Аналогичная работа Боланда и Купера, проведенная на других субстратах в водных растворах, показала, что реакции глюкозидов и дисахаридов, представляющие окислительное расщепление глюкозидных связей, также могут быть объяснены с точки зрения образования промежуточного радикала перекиси [105]  [c.316]

    Расщепление связи С—Н может также быть результатом атаки на эту связь другого свободного радикала (гетероатомный радикал называется.в этом случае цромотором радикалов ). При этом причина отрыва атома водорода — возникновение более стабильного углеродного радикала. [c.209]

    Из табл. 2 видно, что небольшая величина константы Ферми для свободного радикала азота соответствует полной локализации неспаренного электрона на одном атоме, а значительно большие значения констант изотропного свер.хтонкого расщепления в спектрах окислов азота и иона соли Фреми сочетаются с делокализацией неспаренного электрона по нескольким атомам. [c.28]

    Десульфирование органических сульфидов в присутствии никеля.Ренея как катализатора обычно протекает через образование свободных радикалов [279, 280].-Эту реакцию можно рассматривать как процесс гомолитического замещения под действием никеля, который сопровождается одновременным или последующим расщеплением алкилсульфида никеля и образованием второго свободного радикала [c.238]


Смотреть страницы где упоминается термин Свободные радикалы расщепление: [c.56]    [c.108]    [c.360]    [c.355]    [c.360]    [c.159]    [c.50]    [c.162]    [c.311]    [c.593]    [c.181]    [c.215]    [c.120]   
Органическая химия Том 1 перевод с английского (1966) -- [ c.296 ]




ПОИСК





Смотрите так же термины и статьи:

Происхождение сверхтонкого расщепления в спектрах Ц ароматических свободных радикалов

Расщепление под действием свободных радикалов

Свободные радикалы

Свободные радикалы ион-радикалы



© 2024 chem21.info Реклама на сайте