Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поли дихроизм

    Известно, что для определения силовых полей молекул практически недостаточно одних спектроскопических данных, так как число колебательных частот молекулы всегда меньше числа силовых постоянных. Кроме того, часто из-за перекрывания полос в спектре возникают трудности с выделением полос отдельных колебаний. Использование колебательного кругового дихроизма помогает в решении этого вопроса, поскольку правила отбора могут существенно различаться для отдельных полос в области их перекрывания, например, г(С —Н) в -валине [c.213]


    Явление Фарадея выявляет индуцированную анизотропию вещества в магнитном поле для лучей с правой и левой круговой поляризацией. Получаемые данные в виде численных значений угла поворота плоскости поляризации линейно поляризованного света или кривых дисперсии магнитного оптического вращения или магнитного кругового дихроизма используются для изучения электронного строения молекул. [c.229]

    Одним из наиболее распространенных методов исследования ориентированных пептидных цепей является метод инфракрасного дихроизма. При этом регистрируют спектры поглощения белка для двух взаимно перпендикулярных направлений поляризации падающего света. В одном случае вектор напряженности электрического поля параллелен пептидным цепям, а в другом — перпендикулярен им. Такая пара спектров для ориентированных фибрилл инсулина приведена на рис. 13-3. Считается, что молекулы инсулина находятся в этом случае в р-кон-формации и уложены поперек оси фибриллы (кросс-р-структура). Таким образом, когда вектор напряженности электрического поля параллелен оси фибриллы, он перпендикулярен пептидным цепям. Поскольку полоса амид I определяется прежде всего колебаниями карбонильной группы, которые в -структуре перпендикулярны пептидным цепям, интенсивность этой полосы больше для случая, когда вектор напряженности электрического поля тоже перпендикулярен пептидным цепям, чем для случая, когда этот вектор им параллелен (перпендикулярен оси фибриллы рис. 13-3). То же самое справедливо и для полосы амид А, которая определяется в основном растяжением связи N—Н. Дихроизм полосы амид П носит противоположный характер, поскольку здесь определяющую роль играет изгиб N—Н-связи, который осуществляется в пределах плоскости пептидной группы, но происходит в продольном направлении. [c.12]

    Дипольный момент перехода имеет размерность длины (обычно его выражают в ангстремах) его можно представить как меру смещения зарядов в процессе перехода. Свет наиболее эффективно поглощается в том случае, когда направление его поляризации (т. е. направление вектора напряженности электрического поля) и направление момента перехода совпадают. В этом легко убедиться, измеряя поглощение света кристаллами. Как и инфракрасные спектры поглощения ориентированных пептидных цепей (рис. 13-3), электронные спектры кристаллов обнаруживают четко выраженный дихроизм. [c.19]


    Дихроизм в электрическом поле, иначе говоря, различное поглощение плоскополяризованного света в двух взаимно перпендикулярных направлениях. [c.213]

    Спектры кругового дихроизма в целом легче интерпретируемы, так как различные эффекты Коттона могут быть отнесены к соответствующим электронным переходам амидного хромофора. И отсюда, определенные характеристические кривые могут быть отнесены к определенным упорядоченным конформациям, а неупорядоченные формы имеют свой собственный спектр КД. Суммарные данные о различных спектрах КД для поли ( -аминокислот) в различных растворителях, представленные в виде максимумов длин [c.436]

Таблица 23.7.1. Данные кругового дихроизма для поли(L-аминокислот) 36, 70] Таблица 23.7.1. <a href="/info/775106">Данные кругового дихроизма</a> для поли(L-аминокислот) 36, 70]
    В работе [87] проведено также измерение кругового дихроизма для поли-А при нейтральном pH. Полученные термодинамические параметры тепловой денатурации приведены в. табл. 7. [c.194]

    Другим важным свойством электромагнитной волны является ее поляризация. Неполяризованные электромагнитные волны имеют случайное направление своих электрических и магнитных составляющих относительно оси распространения волны. На примере рис. 18-3 это означает, что электрические и магнитные составляющие (поля), которые всегда остаются ортогональными друг к другу, имеют переменную и непредсказуемую ориентацию в плоскости, перпендикулярной направлению распространения волны. Если, однако, все осцилляции электрического (или магнитного) поля находятся в какой-либо одной плоскости (например, плоскость Ех или Мх), то говорят, что волна плоско поляризована, как это и показано на рис. 18-3. Если эта плоскость вращается с постоянной скоростью вокруг оси распространения волны, то говорят, что волна поляризована по кругу. Хотя мы не будем далее использовать эти представления, следует заметить, что эти явления положены в основу нескольких важных спектрохимических методов— поляриметрии, дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД). Эти методы зависят от способности некоторых оптически активных химических частиц изменять направление поляризации электромагнитной волны и иСпользуются в анализе для идентификации этого особого класса веществ. [c.610]

    Экспериментальное определение величин дипольных моментов молекул в возбужденных состояниях не может быть основано на обычных методах измерения молекулярной поляризации (гл. II) вследствие весьма малого времени жизни этих состояний и, следовательно, ничтожных концентраций возбужденных молекул при обычных условиях возбуждения. Методы определения величин основаны на изучении оптических свойств молекул, помещенных в различные условия электрического взаимодействия со средой (растворители) илн с внешним электрическим полем, и связаны с исследованием одного из следующих явлений 1) сдвигов полос в спектрах поглощения и люминесценции в различных растворителях и при различных температурах 2) люминесценции и поглощения растворов в сильных электрических полях (поляризация люминесценции и электрический дихроизм) 3) спектров поглощения соединений в парообразном состоянии в электрическом поле (эффект Штарка). [c.232]

    Методы исследования растворов в сильном электрическом поле позволяют более точно оценить дипольные моменты, но они весьма сложны по технике эксперимента и обработке экспериментальных данных. Предпочтение следует отдать методу электрического дихроизма, который обладает большой универсальностью и значительной точностью. Наименее универсален метод Штарка, однако он является единственным методом определения р.е молекул в [c.238]

    Ряд авторов публикует работы по изучению физических, химических и механических свойств полиэтилена, определению кристалличности полиэтилена и температур плавления [208—211 ], кинетике кристаллизации [212], фракционированию и определению молекулярных весов [213, 214], статистической механике разбавленных растворов [215], плотности растворов полиэтилена [216],ориентации в полиэтилене [217—219] и влиянию ориентации на сорбционную способность полимеров [220] и на теплопроводность [221], ядерной магнитной релаксации в полиэтилене [222], зависимости сжимаемости от температуры при больших давлениях [223], влиянию на аутогезию молекулярного веса, формы молекулы и наличия полярных групп [224], фрикционных свойств полиэтилена [225], скорости ультразвуковых волн в полиэтилене [226], реологического поведения полиэтилена при непрерывном сдвиге [227], инфракрасного дихроизма полиэтилена [228], плотности упаковки высокополимерных соединений [229], кристалличности и механического затухания полиэтилена [230], межкристаллической ассоциации в полиэтилене [231], принципа конгруэнтности Бренстеда и набухания поли- [c.188]


    Все эти данные, даже имея некоторую неопределенность, важны тем, что показывают ценность измерений дихроизма, но в то же время и трудность их количественной обработки в ряде случаев. Эти измерения позволили строго доказать наличие в синтетических полипептидах вытянутой (Р) конфигурации [871, которая и предполагалась по аналогии со структурой Р-кератина, установленной Астбери, а также была показана первоначально рентгенографически [881. В случае ориентированных образцов, приготовленных в определенных условиях, получается спектр, в котором полосы валентных колебаний ЫН и СО оказываются поляризованы перпендикулярно, как в найлоне, что показывает и аналогичную найлону ориентацию пептидных групп. Показана возможность получения ориентированных пленок а- или Р-формы одного и того же полипептида, что иллюстрируется, например, рис. 13, представляющим спектры в поляризованном излучении поли-Ь-аланина (К = СНд). Ни один из этих спектров не соответствует 100%-ному содержанию какой-либо одной из форм, о чем говорит резкая карбонильная полоса, которая (как это показано измерениями спектров многих различных полипептидов) у Р-формы имеет частоту примерно на 25 см ниже, чем у свернутой конфигурации [80, 891. Из рисунка видно, что дихроизм каждой из показанных сильных пептидных полос в этих двух спектрах противоположен. [c.317]

    Интенсивно развиваются методы снятия спектров магнитной дисперсии оптического вращения (МДОВ) и особенно магнитного кругового дихроизма (МКД). В основе этих методов лежит эффект Фарадея любое прозрачное вещество, помещенное в магнитное поле, вращает плоскость поляризации при прохождении через [c.43]

    С двойным лучепреломлением полимеров связано возникновение явления фотоупругости (в механическом поле), эффекта Керра (в электрическом поле) и эффекта Коттона—Мутона (в магнитном поле). Фотоупругость полимеров зависит от их фазового и физического состояния. Метод фотоупругости используется для изучения характера распределения внутренних напряжений в полимерах без их разрушения [9.4]. Изучая эффект Керра в полимерах, можно оценить эффективную жесткость полярных макромолекул, мерой которой служит корреляция ориентаций электрических диполей вдоль цепей [9.5]. Наблюдение эффекта Коттона — Мутона (проявление дихроизма в магнитном поле), обусловленного диамагнитной восприимчивостью и анизотропией тензора оптической поляризуемости, позволяет оценивать значения коэффициентов вращательного трения макромолекул полимеров. Все эти методы исследования оптических свойств полимеров получили широкое распространение и, так же как и спектроскопические методы, в достаточной мрпл описаны в литературе [9.6 50]. [c.234]

    РИС. 13-3, Инфракрасный дихроизм фибрилл инсулина. Сплошная линия вектор напряженности электрического поля параллелен оси фибриллы штриховая линия вектор напряженности электрического поля перпендикулярен оси фибриллы. [Burke М. J., Rougvie М.. А., Bio hemistry, 11, 2437 (1972)]. [c.11]

    В 1845 г. Фарадей записал в своем дневнике ...в конце концов мне удалось намагнитить и наэлектризовать луч света и осветить магнитную силовую линию . Речь шла об открытии магнитного вращения плоскости поляризации света, распространяющегося вдоль направления магнитного поля. Это явление получило название эффекта Фарадея. Приведенные слова имеют лишь фигуральный смысл — магнитное поле действует не на свет, а на вещество, которое обретает в поле кругоное двулуче-преломленпе. Сравнительно недавно эффект Фарадея — магнитное оптическое вращение (MOB) и магнитный круговой дихроизм (МКД) — нашли важные применения в молекулярной биофизике. [c.159]

    Отклонение формы частиц от сферической дает ряд новых эффектов [28]. В первую очередь это дихроизм — различие в интенсивности рассеяния света при падении на частицы луча света, параллельного и перпендикулярного длинной оси частицы. Практически дихроизм можно наблюдать, если все частицы коллоидного раствора ориентировать параллельно воздействием электрического (или магнитного) поля. При достаточно больщой концентрации частиц эффекты их ориентации во внещнем поле мог>т многократно перекрываться эффектами коагуляции под действием внещнего поля. Примечательно, что коагуляция может быть обратимой по отнощению к полю, т. е. при его выключении происходит распад флокул коагулята на исходые частицы и возврат к первоначальной величине коэффициента рассеяния света (см. подраздел 3.19). [c.748]

    Это говорит о том, что перестройка структуры в механическом поле в сшитых эфирах целлюлозы может осуществляться только ограниченно за счет свободных, не включенных в сетку, участков макромолекул, которые играют роль шарниров сетки и позволяют ориентироваться ей вдоль направления вытяжки. В полностью сшп-тых метилцитратах целлюлозы (отсутствие золь-фракций) при растяжении на 10—15 % (предельная степень растяжения) дихроизма полос не наблюдается. Узлы сетки, вероятно, представляют собою крупные области с заторможенным движением. [c.221]

    Вязкоупругие свойства жидкого кристалла характеризуются набором модулей упругости Кц и коэффициентов вязкости уь определяющих свойства однородного жидкого кристалла. Эти параметры в сочетании с анизотропией магнитной и диэлектрической восприимчивостей Дх и Ае определяют характер изменений в жидком кристалле при внещних воздействиях. Для полипептидных жидких кристаллов Ах и Ае положительны по знаку. Следовательно, в достаточно сильном магнитном (электрическом) поле жидкий кристалл макроскопически однородно ориентирован так, что продольные оси спиральных макромолекул параллельны направлению поля. Очевидно, что такая упорядоченность нарушает холестерическую макроструктуру, характерную для жидкого кристалла ПБГ в отсутствие внешнего поля. Фактически такой структурный переход от холестерика к нематику используется во многих технических устройствах благодаря удобству контроля за переходом и позволяет определить критическую величину поля, индуцируюш его такой переход. Индуцированный полем переход был открыт в лиотропных системах при изучении молекул растворителя методом ЯМР-опектроскопии [32—34]. Позднее этот лереход изучался методами ЯМР [35], инфракрасного дихроизма 4], оптических исследований [36], магнитной восприимчивости [37] и импульсной лазерной техники [38]. Переход можно также наблюдать при измерениях шага холестерической спирали как функции напряженности лоля. На рис. 11 показана зависимость относительного шага [c.198]

    Были изучены сополимеры бутадиена и у-бензилнЬ-глутамата (Б-Г), стирола и у-бензил-Ь-глутамата (С-Г), бутадиена и карбо-бензокси-Ь-лизина (Б-КК), стирола и карбобензокси-Ь-лизина (С-КК), бутадиена и Ы -оксипроиилглутамина (Б-ОГ). Эти сополимеры исследовали в сухом состоянии и в различных растворителях методами дифракции рентгеновских лучей и электронной микроскопии, инфракрасной спектроскопии и кругового дихроизма. В сополимере Б-ОГ цепи поли-М -оксипронилглутамина растворимы в полярных и неполярных растворителях, но даже в растворе в акриловой кислоте их конформация такая же, как и у гидрофобных полипептидов. Свойства сополимера Б-ОГ описаны в следующих разделах. [c.244]

    Общее выражение для дипольного момента показывает, что его вычисление в случае возбужденных состояний ничем не отличается от вычисления дипольного момента молекулы в основном состоянии. Сложнее определить его экспериментально. Если молекула имеет достаточно большой постоянный диполь ( л > >3-10-3 Кл-м), он ориентируется в сильном магнитном поле, что обнаруживается по появлению дихроизма. Введем определение величины Ljjt [c.407]

    О — Ре расположены в плоскости октаэдрического слоя (параллельно плоскости спайности минералов), что обусловливает появление полосы переноса заряда ири е (001). В тетраферрифлогопите, содержащем ионы Ре + в тетраэдрах, заряд переносится в направлении, перпендикулярном (001), чем объясняется обратная схема абсорбции этого минерала. Для спектров кристаллического поля (полос <1 — -переходов) ионов переходных элементов группы железа дихроизм полос поглощения связан с локальной симметрией координационных полиэдров, содер- [c.199]

    У желатиновых пленок, содержащих красители, в магнитном поле был обнаружен дихроизм, а его изменения при облучении изучались Ямамото [166]. Этот фотоэффект дают малахитовый зеленый, родамин В, фуксин, флуоресцеин, пинахром, пинацианол и азокрасители. Ямамото предполагает, что фотоэффект связан с образованием триплетного состояния красителей при облучении. [c.303]

    Впервые изучению такого влияния в 1941 г. была посвящена работа Куна, Дуркопа и Мартина [1]. Эти исследователи обратили внимание на то, что для молекул с постоянными дипольными моментами распределение по ориентациям во внешнем электрическом поле должно быть анизотропным они предсказали, что для растворов таких молекул должно наблюдаться явление дихроизма. Подобный дихроизм действительно наблюдался и был назван электрическим дихроизмом. Однако в то время экспериментальная техника не была еще достаточно разработана и количественные результаты получить не удалось [1]. [c.274]

    Теория электрического дихроизма была развита также Платтом [11 Основанная на результатах его прежней работы [12], эта теория привела к заключению, что под действием электрического поля изменяются веса резонансных стру1<тур для молекул типа мероцианина и что именно эти изменения приводят к ноявлению больших сдвигов полос поглощения под действием электрического поля [13а — д, 15]. Можно показать [14], что представление об изменении весов резонансных структур эквивалентно представлению о поляризации молекулы под действием электрического поля. Поляризационный э фект не может, однако, иметь существенного значения при объяснении сдвига полосы поглощения, происходящего при действии внешнего поля, а также поля реакции 2, связанного с влиянием растворителя на сдвиг по.тосы поглощения. Для молекул тина мероцианина основной причиной сдвига полосы является наличие большого дипольного момента в основном состоянии и, следовательно, больших изменений этого дипольного момента при возбуждении молекулы (см. (14], а также т. 2, разд. П-5), па эту причину указывалось еще в работе [12]. Таким образом, для молекул такого типа, конечно, будет наблюдаться большой эффект сдвига полосы поглощения под действием внешнего ноля, хотя совсем по другим причинам, чем в резу.тьтате изменения веса резонансных структур. [c.275]

    Магнитооптические явления. Эффект Коттона — Мутона — ориентационное двойное. пучепре-ломление в магнитном поле, аналогичное эффекту Керра. Оно объясняется анизотропией тензора оптич. поляризуемости и диамагнитной восприимчивости. Это явление использовано для исследования полимеризации стирола. По Эффекту Коттона — Мутона или дихроизму в магнитном поле можно определять коэфф. вращательного трения макромолекулы. [c.250]

    С середины 60-х годов лаборатория Джерасси также включилась в работы по изучению органических соединений с помощью эффекта Фарадея, но основное внимание Джерасси, а затем и других исследователей было уделено изучению магнитного кругового дихроизма. Эффект Фарадея проявляется здесь в том, что под влиянием магнитного поля правый и левый циркулярно-поляризованные лучи света взаимодействуют с поглощающей их средой неодинаково. На ]Международном конгрессе по чистой и прикладной химии в Риге в 1971 г. Джерасси уже сообщил о результатах изучения методом магнитного кругового дихроизма широкого круга соединений, таких, как металлопорфирины, коррины, ароматические углеводороды, карбонильные соединения, пуриновые и пиримидиновые основания и их нуклеозидпые производные [23]. [c.211]


Смотреть страницы где упоминается термин Поли дихроизм: [c.163]    [c.131]    [c.361]    [c.58]    [c.194]    [c.332]    [c.194]    [c.319]    [c.35]    [c.67]    [c.236]    [c.237]    [c.237]    [c.73]    [c.274]    [c.489]    [c.315]    [c.307]   
Биофизическая химия Т.2 (1984) -- [ c.117 ]




ПОИСК





Смотрите так же термины и статьи:

Дихроизм



© 2025 chem21.info Реклама на сайте