Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плотность аргон—кислород

    Пример 2, Подсчитать плотность р и приведенный молекулярный вес (М) воздуха, если состав его (по объему) 21% О2, 78% N2 и 1% Аг, а плотность кислорода 1,429 г/уг, азота 1,251 г/л и аргона 1,781 г/л. [c.53]

    Первое допущение, кроме очевидной области низких давлений, достаточно корректно для полимерных материалов большой плотности с значительной долей упорядоченной фазы и малой подвижностью структурных элементов матрицы, например, полиэтилена высокого давления. Второе и третье допущения выполняются при давлениях до 5—6 МПа для газов с малой молекулярной массой в области состояний, значительно удаленных от линии равновесия жидкость — пар (7 7 с), например, гелия, аргона, азота, кислорода, что подтверждается экспериментально (6, 8, 10, 15]. [c.99]


    Поэтому потенциальная энергия межмолекулярного взаимодействия атома адсорбата (например, благородного газа) с цеолитом сильно зависит от направления радиуса-вектора от центра полости к ее стенкам (ребрам каркаса цеолита) или к окну. На рис. 11.3 представлены некоторые потенциальные кривые для межмолекулярного взаимодействия атома аргона с цеолитом NaX. Из рисунка видно, что глубины потенциальных ям для разных направлений изменяются более чем в два раза, причем наибольшие глубины потенциальной ямы получаются прп направлении на места наибольшей плотности расположения ионов кислорода. [c.211]

    Литий — легкий мягкий металл. Плотность его 530 кг/м , температура плавления 180° С. Только 0,26 г, или 0,49 см , лития требуется для элемента емкостью 1 А-ч. Литий бурно реагирует с водой и кислотами, выделяя из них водород, на воздухе быстро окисляется, взаимодействует с кислородом и азотом. Все работы с литием проводят в сухих боксах, заполненных инертным газом — аргоном. Потенциал литиевого электрода около 3 В и зависит от природы и состава электролита. [c.276]

    ВОДЫ занимают места, недоступные для таких газов, как аргон, криптон или кислород. Однако азот, по-видимому, или заполняет полости, недоступные для других молекул, или же должен иметь повышенную среднюю адсорбционную плотность. Дополнительное пространство, занимаемое водой, должно состоять из малых объемов в 8-ячейках, образующих стенки каналов. Рассчитанный свободный объем главных каналов в структуре цеолита составляет 614 А на элементарную ячейку, что вполне сопоставимо с объемом пор, определенным по адсорбции постоянных газов Аг и Оа и равным 619—642 А . [c.443]

    Открытие в составе воздуха первого из инертных газов — аргона, вошедшее в историю химии под образным названием торжество третьего десятичного знака , состоялось лишь примерно сто лет спустя при следующих обстоятельствах. В конце XIX, в. предметом ожесточенных споров сделалась гипотеза Проута, Согласно этой гипотезе, атомы всех элементов представляют собой сочетания атомов водорода, так как по крайней мере большинство атомных весов элементов оказываются кратными от единицы. Для решения споров потребовалось повторное определение атомных весов, в частности через точное измерение удельных весов таких газов, как азот, кислород и водород. Зтой задачей и был занят английский экспериментатор Релей, когда он натолкнулся на непонятный факт азог, выделенный из воздуха путем уда-, ления из него кислорода (и СОг), имел одну плотность, а азот, выделенный из азотистых соединений, — другую, несколько меньшую (1,257 и 1251 г/л). [c.176]

    Три полученных образца были тщательно высушены их плотности, которые были определены при 25 °С и давлении 1 атм, составляли для образца I 1,2572 г/л, для образца II 1,2505 г/л и для образца III 1,2564 г/л. Последняя величина колебалась при изменении относительных количеств аммиака и кислорода, и многие экспериментаторы пренебрегли бы этими колебаниями, отнеся их за счет погрешности эксперимента. Однако Рэлей и Рамзай повторили и выполнили в измененном виде эксперимент Кавендиша и получили инертный газ, который назвали аргоном. Данные спектрального анализа убедили их, однако, что этот газ не является индивидуальным элементом, и последующие исследования, продолжавшиеся несколько лет и включавшие тщательную дистилляцию сжиженного газа, привели к получению относительно чистых образцов аргона, неона, криптона и ксенона. Спектральные данные подтвердили, что это новые элементы, а измерение их теплоемкости показало, что они моно-атомны. Таким образом в периодической таблице Менделеева появилась новая группа элементов. Затем Рамзай нашел гелий (элемент, который Локьер обнаружил в солнечной атмосфере) в урановых рудах, где он образуется из альфа-частиц в процессе геологического развития Земли. В 1900 г. с открытием радона в радиевых рудах эта группа элементов была заполнена. Об открытии радона первым заявил Дорн, однако Рамзай и другие исследователи почти одновременно пришли к такому же результату. [c.333]


    Признать аргон сложным веществом нет ныне оснований, хотя при открытии аргона (1894) у меня самого (что высказано в 6 издании. Основ химии") были поводы считать его за прочный полимер азота N (относится к азоту N-, как озон О к кислороду О ), образованный с выделением тепла (а озон—с поглощением). Если же считать аргон и его спутников (гелий и пр.) за самостоятельные химические элементы, то их — вследствие их неспособности образовать солеобразные соединения типа RX" (гл. 15) — должно поместить в особую группу, так сказать нулевую, предшествующую группе 1, элементы которой дают RX, и составляющую переход от галоидов (группа VII, дающая с водородом соединения типа RX, а с кислородом типа RX ). Такое соображение, отвечающее тому, что мне лично было высказано Рамзаем (19 марта 1900 г.), находится в согласии с тем, что аргон и его аналоги содержат по одному атому в частице, что дает возможность, судя по плотности газа  [c.488]

    До конца XIX века полагали, что воздух состоит только из кислорода и азота. Но в 1894 г, английский физик Дж. Рэлей установил, что плотность азота, полученного из воздуха (1,2572 г/л), несколько больше, чем плотность азота, полученного из его соединений (1,2505 г/л). Профессор химии У. Рамзай предположил, что разница в плотности вызвана присутствием в атмосферном азоте примеси какого-то более тяжелого газа. Связывая азот с раскаленным магнием (Рамзай) или вызывая действием электрического разряда его соединение с кислородом (Рэлей), оба ученых выделили из атмосферного азота небольшие количества химически инертного газа. Так был открыт неизвестный до того времени элемент, названный аргоном. Вслед за аргоном были выделены гелий, неон, криптон и ксенон, содержащиеся в воздухе в ничтожных количествах. Последний элемент подгруппы — радон — был открыт при изучении радиоактивных превращений. [c.660]

    К. В [38] было найдено, что газы, входящие в состав воздуха, по-разному влияют на плотность. Азот плотность понижает, а кислород, аргон и углерода диоксид повышает плотность. Коррекция значений плотности при отклонении ее изотопного состава от изотопного состава ССОВ нами уже рассматривалась. [c.22]

    Тодос и его сотрудники установили, что предложенная Абас-Заде [53] зависимость X — Х = ар , справедливая для теплопроводности, может быть расширена аналогичная зависимость разности вязкостей ц — 1° от плотности дает в рассматриваемых ими случаях хорошее совпадение с опытными данными для сжатых и сжиженных газов. Для азота, аргона, кислорода, двуокиси углерода, двуокиси серы, метана, этана, пропана, м-бутана, изобутана и пентана найдена общая кривая зависимостп (р — от приведенной плотности рлр = р/р1ф. Эта кривая описывается уравнением  [c.255]

    Применение атмосферы аргона и кислорода дает хорошие результаты также в сочетании с дугой переменного тока. Сравнивались результаты определения ряда элементов в графите при испарении в атмосфере воздуха и смеси 75% аргона с 25% кислорода. Использовали дугу переменного тока силой 8—16 А. Пределы обнаружения бора, бериллия, германия, кальция, магния, титана и цинка в графитовой основе и бериллия, кадмия, железа, германия, марганца, ниобия и титана в основе графит-Ь -Ькарбонат лития в 2—10 раз ниже в атмосфере аргона с кислородом, чем в воздухе. В основе графит + фторид лития (3 1) пределы обнаружения бора, бериллия, германия, кадмия, марганца, ниобия и цинка в 2—5 раз ниже в атмосфере аргона с кислородом, чем в воздухе. Зато предел обнаружения олова во всех матрицах при анализе в воздухе в 5 раз ниже, чем в смеси аргона с кислородом. Точность анализа в атмосфере аргона и кислорода несколько лучше, чем в воздухе. Но не для всех элементов оптимальное соотношение аргон кислород было 75 25. Так, максимальное значение /л//ф при определении магния и хрома в графите получено в атмосфере 40% аргон-ЬбО% кислорода, а при определении хрома и железа в основе графит + -[-карбокат лития — в атмосфере чистого аргона. Таким образом, состав 75% аргона-f 25% кислорода является компромиссным. Авторами исследованы также смеси гелия с кислородом (70—100% Не+ЗО—0% Ог). При этом столкнулись со следую-шими трудностями. Большое различие в плотности гелия и кислорода затрудняет смешение их в контролируемых условиях. Кроме того, при содержании, в смеси 30% кислорода электроды горели очень интенсивно, как будто кислорода было гораздо больше. Поэтому от гелия отказались, хотя характеристики у гелия и аргона близкие [236]. [c.128]

    Гэмпсон любезно предоставил в наше распоряжение один из своих образчиков жидкого воздуха — около 100 мл. После того как его свойства были продемонстрированы студентам в моей лаборатории, осталось еще несколько кубиков. Тогда я вздумал рассмотреть его спектр предварительно освободив его от деятельных газов, ему дали испариться в газометре и при помощи указанных реактивов отняли кислород и азот. Остаток обнаружил спектр аргона, но одновременно мы наблюдали две яркие линии одну — в желтой части спектра, другую — в зеленой. В тот же вечер мы определили плотность газа, она на две единицы превышала плотность аргона, [c.46]

    Выделены и изучены смолистые вещества после трехлетнего хранения топлив (табл. 39). На силикагеле АСК была отделена углеводородная часть, а смолистые вещества десорбировали последовательно бензолом и спиртоацетоновой (1 1) смесью. Растворы смол тщательно сушили и фильтровали, после чего растворитель отгоняли в тоне сухого аргона. Средняя молекулярная масса фракции смол превышает молекулярную массу соответствующих исходных топлив на 30—50 единиц для ТС-1, Т-1 и бензинов, на 80—130 единиц для ДЗ. Плотность смолистых веществ приближается к 1000 кг/м . Высокие значения коэффициента рефракции и эмпирические формулы указывают на циклическую структуру смол. Выделенные смолистые вещества являлись сложной смесью сернистых, азотистых и кислородных соединений. В смолах присутствуют также соединения, в состав которых входят сера, кислород и азот одновременно. [c.93]


    ТО есть на поляризацию индикаторного электрода расходуется только часть налагаемого напряжения. Но при условии, что площадь поверхности анода во много раз больше, чем у катода, поляризацией анода можно пренебречь, потому что из-за малой плотности тока его потенциал будет оставаться нрактически постоянным. Если сопротивление раствора уменьшить, то слагаемым Ш можно пренебречь, потому что в полярографической ячейке редко возникают токи, сила которых выше нескольких десятков микроампер. Для снижения сопротивления в анализируемый раствор вводят избыток индифферентного электролита, или просто фона. В качестве фона пригодны различные соли щелочных и щелочноземельньк металлов, растворы кислот, щелочей, а также разнообразные буферные смеси. Нри этих условиях можно полагать, что практически все налагаемое на ячейку внешнее напряжение расходуется на изменение нотенциала индикаторного электрода, то есть в и Е . Перед регистрацией нолярограммы необходимо удалить из раствора растворенный кислород, который восстанавливается на ртутном электроде. Растворимость кислорода в разбавленньк растворах электролитов довольно высокая, около 10 " моль/л, поэтому он мешает полярографическому определению большинства веществ. Из раствора кислород можно удалить, барботируя через него какой-либо электрохимически инертный газ (азот, гелий, аргон). В этом случае ячейка должна быть достаточно герметичной, а избыток газа следует отводить через гидрозатвор. Во время регистрации нолярограммы, для того чтобы кислород воздуха не попадал в ячейку, над поверхностью раствора рекомендуется пропускать ток инертного газа. Для удаления растворенного кислорода необходимо 15-20 минут барботировать инертный газ, а при работе с низкими концентрациями вещества и в случае очень точньк измерений требуется увели- [c.165]

    Открытие элементов нулевой группы. Тщательные и весьма точные опыты, предпринятые Рэлеем и Рамзаем, столкнувшимися с проблемой различия в плотностях азота, полученного из. воздуха после удаления кислорода, и азота, полученного разложением азотсодержащих соединений (в первом случае плотность оказалась выше на 0,1%), привели к открытию 5 редких газов, что знаменовало собой выдающийся успех классической экспериментальной химии. К моменту открытия аргона, 8Аг (1894 г.) и гелия 2Не (1895 г.) не было точно известно, какое место они должны занять в периодической системе. Однако Рамзай решил, что оба эти элемента принадлежат к одному семейству, и для Не определил место в таблице Менделеева между Н и зЫ, а для Аг (который в то время обозначали символом А) —между 1 С1 и эК. В 1896 г. были предсказаны свойства трех еще не обнаруженных газов, относящихся к тому же семейству, и в течение мая — июля 1898 г. были открыты криптон збКг, неон юЫе и ксенон 54Хе, принадлежность которых к так называемой нулевой группе была доказана исследованием их свойств. Действительно, было бы неестественным такое расположение элементов в периодической таблице, когда непосредственно за галогенами следовали бы щелочные металлы, диаметрально отличающиеся от них по свойствам включение между ними нулевой группы оказалось посновапным и придало периодической системе законченный [c.29]

    Хотя дисперсионная составляющая для катионов должна быть значительно меньше соответствующего вклада атомов кислорода решетки, даже для молекул с симметричным распределением электронной плотности наблюдается некоторое снижение адсорбции и теплот адсорбции с уменьшением плотности, как показано для адсорбции аргона на декатионированных морденитах [4]. Декатионирование представляет собой другой путь получения изоструктурных цеолитов с различной катионной плотностью. При декатиониравании путем кислотной обработки следует принимать во внимание возможность деалюминирования образцов [5, 6]. Снижение адсорбции СО2 с уменьшением содержания катионов в элементарной ячейке наблюдается и для синтетических эрионитов, отличающихся степенью декатионирования и деалюминирования (рис. 2, а). [c.192]

    Газ, выделяющийся во всех этих стадиях, а также вследствие электронной бомбардировки различных частей трубки, был подвергнут исследованию [15881. Выделение газов из металлов [5681, слюды и геттеров [2099] также исследовалось с использованием омегатрона при давлениях порядка 10 мм рт. с/й. Описано применение омегатрона [1788] для изучения количества кислорода, окиси углерода и азота, адсорбирующихся на вольфрамовом катоде при 300° К, которые выделяются холодной нитью . Омегатрон может быть использован в качестве манометра для измерения давления ионизационный манометр неудовлетворителен для измерения давления кислорода. В работах, связанных с исследованиями верхних слоев атмосферы, радиочастотный масс-спектрометр особенно удобен благодаря своим малым размерам и весу (18421. Несколько таких приборов может быть установлено на одной ракете 1963], и специальные условия, при которых проводилась работа, обеспечили возможность создания очень простых конструкций. Например, при работе на большой высоте можно было устранить вакуумный кожух, системы напуска и с(качную систему, а для изучения ионов, присутствующих в атмосфере, иет необходимости в ионизационной камере. Разрешающая способность прибора была очень мала, поскольку нужно было различать только такие ионы, как N , NO и Oi, поэтому необходимо было иметь три прибора для анализа положительных и отрицательных ионов, а также нейтральных осколков. Описан метод для калибровки по массам [10531 и опубликованы результаты различных измерений арктической ионосферы [1052, 1054, 1188, 1371, 2041]. Было показано, например, что происходит диффузионное разделение аргона и азота на высоте выше 110 км, что при 220 км основными газами являются N2, О, NO и О2 в примерных соотношениях 2,8 2,9 1,4 1. Ионы О не появляются ниже 130 км, но представляют собой основные положительные ионы в спектре на высоте больше 200 км. В Арктике на высоте 200 км плотность атмосферы днем в летний период в 20 раз больше плотности ночью в зимнее время, равной 5-10" г/л . На высоте 100наблюдались ионы О , N0", NO (преимущественно ионы N0 и 0J). Преобладание ионов N0" можно объяснить низким потенциалом ионизации NO (9,5 эе). Ионизационные потен циалы О2 и N2 составляют 12,5 и 15,5 эв соответственно. [c.497]

    Свойства. Азот — бесцветный, не имеющий запаха и вкуса газ, более легкий, чем воздух. Вес 1 л чистого азота нри 0° и 1QQ мм ртст равен 1,2505 г, а вес воздушного азота , содержащего 1,185 об. % аргона, составляет 1,2567 г вес 1 л воздуха при тех же условиях равен 1,2928 г. Азот сжижается с трудом (критическая температура — 147,1°, критическое давление 33,5 атм, критическая плотность 0,3110). Температура кипения жидкого азота равна —195,8°, температура плавления твердого азота — 210,5°. В воде азот менее растворим, чем кислород 1 л воды при 0° растворяет 23,6 мл воздушного азота или 23,2 мл чистого азота. [c.634]

    Как э,то следует из приведенного списка, атомные веса, принятые Менделеевым для церия (140), эрбжя (178) и лантана (180), заметно отличаются от современных. Для атомного веса дидима Менделеев принял значение 138. Довольно близок к современному значению атомный вес (88), принятый для иттрия Однако изучение редких земель с помощью спектрального анализа, исследования Пера Теодора Клеве (1840—1905), профессора Упсальского университета, привело его к от-крытию в 1879 г. самария, эрбия, тулия и иттербия Наряду с этим исследования Ауэра фон Вельсбаха (1858—1929) открывшего празеодим и неодим в 1885 г., и Эжена Анатоля Демар-с э (1852—1904), открывшего в 1896 г. европий, и особенно аналитическое изучение группы редких земель, столь трудной для экспериментирования, сделали необходимым пересмотр таблицы Менделеева. К этому добавляется одно из самых сенсационных открытий химии второй половины XIX в. и притом в неожиданной области — открытие Рамзаем благородных газов в 1894—1898 гг. Это открытие имело в своей основе одно из наблюдений лорда Роберта Джона Рэлея, сына знаменитого физика Джона Уильяма Рэлея. Определяя плотность азота, нолученного химическим путем, и азота, полученного перегонкой жидкого воздуха, Рэлей заметил, что плотность последнего всегда несколько выше, чем первого. Так как Рэлей не мог предложить никакого объяснения этому факту, он сообщил о своем наблюдении в журнале Природа приглашая химиков дать необходимое объяснение. Это сообщение тотчас же привлекло внимание Рамзая, и он объединился с Рэлеем для того, чтобы отыскать истинную причину наблюдавшегося явления. Переработав значительное количество жидкого воздуха, лорд Рэлей и Рамзай объявили в 1894 г. об открытии нового элемента, который они назвали аргоном вследствие его химической инертности В этом отношении не следует забывать, что еще в 1785 г. Кавендиш, пропуская электрическую искру через смесь воздуха с кислородом в присутствии едкого кали, заметил, что после образования азотной кислоты, поглощенной едким кали, и удаления избытка кислорода получается незначительный остаток — /i2 полного [c.276]

    При электролитическом рафинировании гафния применяют хлоридные и хлоридно-фторидные электролиты. В случае хлоридных электролитов в состав первичного электролита вводят Hf li, в случае фто-ридно-хлоридных — КгНГРв. В отличие от титана при рафинировании которого сравнительно легко получают устойчивый электролит, содержащий низшие хлориды, при рафинировании гафния стабильный электролит получить трудно. Низшие хлориды гафния неустойчивы и легко диспропор-ционируют на тетрахлорид и металлический гафний. Давление пара тетрахлорида гафния невелико только при низкой концентрации его Б расплаве, поэтому используют электролиты, содержащие 3,0—8,0% гафния. Электролиз проводят при низкой плотности тока (до 20 а дм ) в герметичных электролизерах в атмосфере аргона или гелия (рис. 129). Содержание примесей в рафинированном металле значительно ниже, чем в исходном материале. Количество кислорода уменьшается с 0,175 до 0,037% [8]. [c.469]

    Ке5 — черный рентгеноаморфный порошок с плотностью 7,11 г см и магнитной восприимчивостью = 0,2 10 . При нагревании выше 680° С в токе аргона Ке5 необратимо диспропорционирует на КеЗа и Не. Выше температуры 300° С КеЗ присоединяет серу, образуя КеЗг- В присутствии влаги КеЗ легко окисляется кислородом при обычной температуре по реакции  [c.166]

    Стояки газовых весов изготовлены из медных трубок длиной 8— 10 л и внутренним диаметром 5—8 ми трубки проложены параллельно, вплотную одна к другой. Это позволяет обеспечить в них одинаковые температурные условия. Концы трубок защищены колпаком с отверстием для выхода газов. Дифманометр обычно заполняют керосином плотностью 0,83, вязкость и упругость пара которого ниже, чем воды. Газовые весы для анализа аргона тарируют обычно по 98%-ному кислороду и воздуху. Для этого в стояк анализируемого газа пускают кислород и установочными винтами 12, 13 и 14 ставят трубку дифмано1метра в такое положение, чтобы мениск жидкости установился на цифре 50 (всего на [c.356]


Смотреть страницы где упоминается термин Плотность аргон—кислород: [c.225]    [c.225]    [c.7]    [c.668]    [c.25]    [c.95]    [c.119]    [c.33]    [c.102]    [c.187]    [c.132]    [c.30]    [c.668]    [c.647]    [c.480]    [c.35]    [c.70]    [c.126]    [c.97]    [c.83]    [c.547]    [c.440]    [c.630]   
Справочник по физико-техническим основам глубокого охлаждения (1963) -- [ c.75 ]




ПОИСК





Смотрите так же термины и статьи:

Аргон

Аргон кислород



© 2025 chem21.info Реклама на сайте