Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Источники получения дизельных топлив

    Нефть является источником получения всех видов жидкого топлива — бензина, керосина, дизельного и котельного (мазут) топлив, из нефти вырабатывают смазочные и специальные масла, нефтяной кокс, битумы, консистентные (пластичные) смазки, нефтехимическое сырье — индивидуальные алканы (парафиновые углеводороды), алкены (олефины) и арены (ароматические углеводороды), жидкий и твердый парафин. Из нефтехимического сырья в свою очередь производят широкую гамму ценных продук- [c.14]


    Отдельные фракции синтетического топлива, кипящие в интервале 160—300° С и содержащие в основном алканы, могут явиться источником для получения дизельного топлива с высоким цета-новым числом. [c.227]

    Альтернативные топлива. Непрерывный рост потребности в жидких топливах и ограниченность ресурсов нефти обусловливают необходимость поисков новых видов топлив, получаемых из ненефтяного сырья. В качестве источника получения такого топлива в первую очередь рассматривают уголь, запасы которого в мире превосходят запасы нефти и газа. При переработке угля можно получить жидкие продукты, содержащие углеводороды и неуглеводородные примеси. Наиболее прогрессивны методы термической обработки угля в атмосфере водорода в присутствии катализаторов. Из получающейся при этом смеси широкого фракционного состава могут быть получены бензин и дизельное топливо. [c.30]

    С целью увеличения отбора фракции 200—320° С на установках АТ и АВТ до 85—90% от ее потенциального содержания в нефти и максимального извлечения при этом из мазута фракций до 360° С предложена схема дооборудования АТ или АВТ [1], основанная на вторичной перегонке тяжелой флегмы непосредственно из атмосферной колонны и части мазута в вакуумном фракционирующем испарителе (2-й способ, см. рисунок, Б). Особенности этой схемы 1) отсутствие дополнительных затрат топлива (так как вторичная перегонка осуществляется только за счет физического тепла потоков атмосферной колонны) 2) использование в качестве теплоносителя и дополнительного источника целевых светлых фракций во фракционирующем испарителе Кф части мазута из колонны Ка 3) проведение перегонки под вакуумом, что позволяет повысить на 3—4% отбор светлых 4) увеличение в 2,5—3 раза флегмового числа в Кфн по сравнению с нижней секцией Кд и повышение за счет этого четкости разделения фракций 5) получение фракции 200—320° С двумя компонентами (легким и тяжелым) не оказывает влияния на качество бензина и керосиновой фракции и позволяет фракцию 320—360° С получать кондиционной, как компонент дизельного топлива. [c.42]

    Альтернативные моторные топлива. Непрерывный рост потребности в жидких моторных топливах и ограниченность ресурсов нефти обусловливают необходимость поисков новых видов топлив, получаемых из ненефтяного сырья. Одним из перспективных направлений является получение моторных топлив из таких альтернативных источников сырья, как уголь, сланец, тяжелые нефти и природные битумы, торф, биомасса и природный газ. С помощью той или иной технологии они могут быть переработаны в синтетические моторные топлива типа бензина, керосина, дизельного топлива или в кислородсодержащие углеводороды - спирты, эфиры, кетоны, альдегиды, которые могут стать заменителем нефтяного топлива или служить в качестве добавок, улучшающих основные эксплуатационные свойства топлив, например, антидетонационные. К настоящему времени разработаны (или ведутся интенсивные исследовательские работы) многие технологии производства синтетических моторных топлив. В нашей стране ведутся исследования по получению моторных топлив из угля (прямым его ожижением или путем предварительной газификации в синтез-газе) в рамках специальной комплексной программы. [c.655]


    Двигатели внутреннего сгорания. Для преобразования химической энергии топлива в механическую широко используют двигатели внутреннего сгорания, которые могут работать по двум основным термодинамическим циклам Отто и Дизеля, базирующимся на получении механической энергии за счет сжатия, нагрева и вывода отработанного газа. В первом цикле топливо распыляется или испаряется и засасывается в рабочую камеру вместе с воздухом. Смесь топлива и воздуха сжимается, а затем воспламеняется от внешнего источника (чаще всего им является электроискровой разряд), что и является началом генерирования энергии за счет тепла горящей смеси. Во втором цикле рабочее тело, т. е. воздух, сжимается самостоятельно, а топливо впрыскивается в жидком виде в конце периода сжатия. Воспламенение осуществляется после того, как топливо перемещается с горячим сжатым воздухом. Требования, предъявляемые к топливу, зависят от типа двигателя. В карбюраторном двигателе, работающем по циклу Отто, следует применять топливо, не вызывающее детонации в момент сжатия топливовоздушной смеси. Необходимо, чтобы оно сгорало равномерно, без преждевременного воспламенения и не имело несгоревшего остатка. В дизельном двигателе [c.331]

    На рис. 14 схематично показаны многочисленные варианты, имеющиеся на НПЗ 1990-ых годов с получением дизельного топлива для стратегии использования водорода. Хотя на этом НПЗ имеются только два производителя водорода, он располагает, фактически, четырьмя возможными источниками водорода, используемыми четырьмя потребляющими установкам . В зависимости от того, в каком режиме работает установка гидрокрекинга, она может производить два потока со значительным содержанием водорода отдувочный газ высокого давления и/или газ мгновенного испарения низкого давления. В дополнение к значительному числу располагаемых вариантов выявление оптимальной стратегии усложняется взаимосвязью между возможными стратегиями и эксплуатационными параметрами производителей и потребителей. Например, чистота водорода, подаваемого в качестве подпитки на установку гидрокрекинга, влияет на рабочее давление и/или количество отдувочного газа, требуемые для поддержания приемлемого парциального давления водорода. Поэтому стратегия использования ресурсов водорода, выбранная для водорода, подаваемого в качестве подпитки, оказывает влияние на работу установки гидрокрекинга и, следовательно, на давление и количество отдувочного газа гидрокрекинга, для которого может потребоваться иная стратегия использования ресурсов водорода. Таким образом, выбор надлежащей стратегии использования ресурсов водорода требует знания как процессов очистки водорода, так и технологии процессов нефтепереработки. [c.486]

    Сегодня многие мировые нефтяные компании направляют свои научные исследования на поиск путей и разработку технологий получения чисто синтетического жидкого топлива, особенно дизельного. Однако огромные капиталовложения и высокая себестоимость получаемой продукции на основе ненефтяного сырья препятствуют началу интенсивной переработки альтернативных углеводородных источников в дизельное топливо. [c.274]

    В этом аспекте, безусловно, важное значение приобретают технические растительные масла — рапсовое, соевое, льняное, подсолнечное и ряд других доступных представителей растительных масел и животных жиров. Переработка всех их в компоненты, добавляемые в нефтяное дизельное топливо, не вызывает затруднений и заключается в основном в обработке их алифатическими спиртами, главным образом метиловым, путем так называемого процесса алкоголиза. После проведенных нами разработок (по сравнению с аналогичными процессами, предлагаемыми за рубежом) технология переработки стала несравненно экономичней температура снижена на 40 °С за счет использования новых типов катализаторов и технологических приемов проведения процессов. Разработаны и проверены на опытных установках процессы алкоголиза и непрерывной нейтрализации продуктов синтеза. На этих установках успешно испытаны оригинальные технические решения, позволяющие вести процесс более эффективно и производительно. Однако сегодня технология переработки растительных и животных жиров в продукты, пригодные для использования в качестве топлив, смазок и различных полупродуктов для основного и тонкого органического синтеза, еще далека от совершенства. Для упрощения и удешевления предлагаемых процессов нужно решить многие фундаментальные и чисто инженерные задачи. Необходимо разработать различные технологии — для разных сырьевых источников с целью получения различных конечных продуктов. Новые процессы необходимо всесторонне проверять на пилотных и опытных установках. [c.274]

    Синтез углеводородов осуществлялся над катализатором Со — ТЬОг — MgO при атмосферном давлении или при давлении 10 ат. Получаемые смеси парафиновых и олефиновых углеводородов использовались для получения автобензинов, бензинов-растворителей, высокоцетановой присадки к дизельным топливам, а в отдельных случаях и как дизельное топливо. Отдельные фракции жидких продуктов синтеза, кипящие выше 230°, служили источником получения моющих веществ. Парафин окислялся в жирные кислоты, на базе которых приготовляли мыла, моющие вещества, пластификаторы и т. п. Церезин использовался для приготовления различных смазок. [c.553]


    Первичный деготь перерабатывают преимущественно для получения погонов, по составу примерно соответствующих нефтепродуктам—бензину, керосину, дизельному топливу. Выход моторных топлив из первичных дегтей обычно невелик, кроме того, чти топлива отличаются высоким содержанием непредельных соединений и потому мало стабильны. Для увеличения выхода ценных продуктов первичные дегти подвергают крекингу (стр. 56) или гидрогенизации (стр. 114). Летучие продукты полукоксования содержат значительное количество фенолов и могут служить существенным источником их получения. [c.105]

    Одним из перспективных направлений является получение моторных топлив из таких альтернативных источников сырья, как уголь, сланец, тяжелые нефти и природные битумы, торф, биомасса и природный газ. С помощью той или иной технологии они могут быть переработаны в синтетические моторные топлива типа бензина, керосина, дизельного топлива или в кислородсодержащие соединения - спирты, эфиры, кетоны, альдегиды, которые могут стать заменителем нефтяного топлива или служить в качестве добавок, улучшающих основные эксплуатационные свойства топлив, например антидетонационные. [c.7]

    Разработка указанных двух систем отражает две крайности. Если вторая система проектируется для работы с частой регенерацией катализатора (через каждые несколько минут его работы) и благодаря этому пригодна для переработки мазутов, то первая система, требующая сохранения высокой активности катализатора в течение тысяч часов, пригодна лишь для переработки дистиллятов с ограниченным концом кипения при мягком температурном режиме. Эта система даст хорошее дизельное топливо, но не может служить источником получения значительного количества бензина с высоким октановым числом. [c.79]

    Газовые турбины могут надежно работать на самых различных топливах, начиная от газообразных и кончая тяжелыми остаточными. При конструировании газовой турбины и расчете камер сгорания для нее выбор топлива определяется прежде всего экономическими соображениями и, в частности, географической близостью источников получения того или иного топлива. Например, газовые турбины, приводящие в движение компрессоры, и газовые насосы на газопроводах работают на природном газе, являющемся отличным топливом для них. В форсированных судовых газовых турбинах используется дизельное топливо, причем повышенное содержание серы не является препятствием для его использования. Однако в общем случае должна быть обеспечена возможность надежной работы газовых турбин на более дешевом остаточном топливе или по крайней мере таком, как моторное топливо. [c.32]

    Основным источником получения минеральных масел является нефть. При ее перегонке получают фракции, представляющие собой смесь различных углеводородов (дистиллятов). Перегонка нефти производится в основном на атмосферных установках с трубчатыми нагревателями. При нагреве нефти до определенной температуры легкие фракции ее переходят в парообразно состояние, затем подвергаются разделению (ректификации) и охлаждению. При этом получаются так называемые светлые дистилляты нефти бензин, керосин, дизельное топливо и остаток перегонки — мазут. [c.5]

    Эти процессы основаны на способности некоторых видов микробов избирательно окислять парафиновые углеводороды, преимущественно нормального строения, используя их в качестве источника энергии, необходимой для их жизнедеятельности. Биомасса, накопленная микроорганизмами в результате процесса окисления алканов, является побочным продуктом процесса и после выделения в чистом виде используется в качестве основы для получения кормового белка. Депарафинизат используют как компонент зимнего дизельного топлива. [c.535]

    Другими источниками получения легких углеводородов являются продукты стабилизации нефти на промыслах и продукты выделения при переработке конденсатов с газоконденсатных месторождений. Конденсат содержит как легкие углеводороды, так и более тяжелые, входящие в состав бензинов и дизельного топлива. [c.225]

    Источником углеводородов в промышленном микробиологическом синтезе являются продукты переработки нефти, в первую очередь дизельная фракция прямой перегонки, содержащая в своем составе нормальные парафиновые углеводороды, структура и молекулярная масса которых оптимальна с точки зрения их потребления дрожжами. В одном из вариантов получения белка одноклеточных сырьем служит непосредственно дизельная фракция, из которой дрожжи утилизируют н-алканы, обеспечивая получение низкозастывающего, так называемого зимнего дизельного топлива. Более распространен, однако, вариант, по которому депарафинизация ведется обычными методами, а жидкие парафины очищают далее с тем, чтобы они имели оптимальные состав и свойства с точки зрения микробиологического синтеза. [c.34]

    В настоящее время ДМЭ применяется в качестве аэрозолеобразующего компонента в дезодорантах вместо фреона, а также как сырье для получения более сложных эфиров, служащих, как правило, растворителями. В более широких масштабах ДМЭ может применяться непосредственно как заменитель дизельного топлива, для синтеза автобензинов, как источник моторных топлив для отдаленных промышленных районов, имеющих ресурсы природного газа и попутного нефтяного газа. [c.245]

    Основными источниками энергии в современном мире являются нефть и газ. Их используют для получения всех видов жидкого топлива — бензина, керосина, дизельного и котельного (мазут) топлив из нефти вырабатывают смазочные и специальные масла. В процессе переработки получают ценные продукты, используемые как сырье для производства пластических масс, синтетических каучуков и смол, синтетических волокон и моющих средств, лекарственных препаратов, индивидуальных соединений (спиртов, альдегидов, кетонов, кислот). [c.3]

    Основным источником получения дизельных топлив являются нефти. Те нефти, из которых нельзя получить высококачественные дестнллатные дизельные топлива, пригодные для быстроходных двигате.ией, с успехом могут быть использованы при производстве дизе пьных топлив для стационарных и судовых тихо ходных двигатедей. [c.150]

    Возможность использования в различных областях наргодного хозяйства присутствующих в нефтепродуктах сераорганических соединений широко показана в работах последних дет 11-77 4]. В связи с этим всестороннее исследование состава и свойств сераорганических соединений нефтей различных месторождений представляет большой интерес. Одной из проблем исследования состава и свойств присутствующих в нефтях сераорганических соединений является ис 1ер-пывающее выделение последних. В настоящей работе прибедё ы результаты достаточно глубокого извлечения (до 93%) сераорганических соединений из нефтяных дистиллятов. На примере арланской, западно-сургутской и самотлорской нефтей проведено сравнительное изучение структурно-группового состава не только сульфидов, но и тиофенов дизельного топлива сернистых и высокосернистых нефтей. Показано, что сырьевым источником для промышленного получения нефтяных сульфидов могут служить наряду с высокосернистыми нефтями, также и сернистые нефти, доля переработки которых значительно выше, [c.19]

    Углеводородами называются соединения, состоящие из углерода и водорода. Различают алифатические предельные и непредельные углеводороды, циклические (нафтены) н ароматические. Наиболее важным источником получения предельных углеводородов состава С Н2 -2 является нефть. При перегонке последней отбирают фракцию т. кип. 150—170° —бензин, нз которой дробной перегонкой получают легкий бензин уд. в. 0,64 -0,66, т. кип. 40 -75°, известный под названием петролейный эфир. Выше кипящая фракция —средний бензин, т. кип. 70—120 , уд. в. 0,70—носит название авиационного бензина, его применяют для приготовления йод-бензнна (раствора йода в бензине, используемого иногда для дезинфекции) и особенно широко в технике для двигателей с зажиганием и в качестве растворителя. Фракцию г. кип. 150 —300° — керосин используют в качестве горючего также для двигателей внутреннего сгорания и иногда в быту, а также для освещения. Фракции, перегоняющиеся без разложения при температурах Кипения, более высоких, чем керосин, называют соляровыми маслами их используют в качестве дизельного топлива, смазочных масел или путем Крекирования превращают в более легкие углеводороды. Перегонкой с водяным паром фракций, кипящих выше 300", получаюг вазелин, который представляет собой густую смесь жидких и твердых углеводородов. Из нефти выделяют, кроме того, смесь твердых углеводородов, называемую парафином, Предельные углеводороды получают и синтетическим путем восстановлением галогенопроизводных, спиртов, альдегидов, кетонов, непредельных соединений, декарбоисилированием кислот, электролизом солеи жирных кислот н др. [c.105]

    Гидрогенизат подвергается дестилляции и получаемые бензин и дизельное топливо после промывки шелочью и водой и стабилизации (бензина) поступают в емкость готовой продукции. Высококипящие фракции служат источником для получения парафина, веретенного и машинного масел. [c.247]

    Кроме рассмотренных выше дизельных топлив 1 и 2, может быть приготовлено также дизельное топливо с к. к. 320°. Это топливо имеет плотность до 0,772 температуру н. к. 240—241°, перегоняется до 280° — 62,0%, до 300° — 87,5 и до 320° —99,0%, температура застывания +2°. Применение его как дизельного топлива весьма ограничено поэтому обычно эта фракция служила источником получения антисептических веществ. Для этих целей фракция 230—330° вначале с целью удаления ненасыщенных углеводородов подвергалась гидрированию прп 300 — 350° под давлением 200 ат в присутствии катализатора вольфрамата никеля. Полученный после гидрирования продукт подвергался обработке сернистым ангидридом и хлором нри 30—40° с одновременным воздействием ультрафиолетовых лучен. Первичный продукт реакции имел формулу СпН2п+130201, [c.514]

    Газоконденсаты могут служить не только богатым источником получения углеводородов, но и могут быть компонентами бензинов, реактивного и дизельного топлив. При использовании ачакского газоконденсата как компонента дизельного топлива во [c.94]

    Ниже весьма кратко рассмотрены некоторые селективные процессы (например, каталитический риформинг, полимеризация, гидрирование, алкилирование и др.) в настоящее время они не используются для получения реактивных и дизельных топлив, но служат для получения однотипных по химическому строению углеводородов — изоалканов и ароматических углеводородов, которые гидрированием могут быть превращены в соответствующие цикланоБые углеводороды. Имеются основания считать, что перспективные реактивные и дизельные топлива улучшенного качества будут в значительной степени состоять из углеводородов определенного строения. Описываемые же процессы могут оказаться более или менее удовлетворительными источниками их получения. По мере увеличения потребления фракций с углеводородами заданного строения процессы получения таких фракций будут совершенствоваться и заменяться новыми, более эффективными. [c.12]

    В качестве моторных топлив применяются для карбюраторных двигателей — бензин, лигроин и керосин, для дизельных двигате-ле11 — газойль и соляровое масло, для реактивных двигателей — главным образом керосино-газойлевые фракции. Мазут прямой гонки служит источником получения машинных масел, а также используется как моторное и котельное топливо. [c.186]

    Сырьевые ресурсы. Существующие мощности по производству аммиака в США, включая строящиеся в настоящее время заводы., достигли 4,73 млн. т/год [36]. Из этого количества около 3,67 млн. г аммиака (77,4%) получают на основе природного газа как источника водорода около 40 тыс. г (0,8%) —на основе котельного нли дизельного топлива 657 тыс. т (13,8%) — на основе водородсодержащих газов с установок платформинга на нефтеперерабатывающих заводах и от-ходящих газов производства ацетилена или этилена 273 тыс. 7 (5,8%)—на основе побочного водорода электролиза поваренной соли и 103 тыс. т (2,2%) —на основе коксового газа. В настоящее время в США нн один завод синтеза аммиака не работает на основе водяного газа. Все такие установки, кроме одной, с 1950 г. переведены на природный газ. Этим исключением является принадлежащая правительству США установка в Моргантауне, Зап. Виргиния, которая работала некоторое время в послевоенный период, но в последующем была полностью законсервирована. Логично предполагать, что и эта установка в случае возобновления ее работы будет переведена на природный газ или котельное топливо как сырье для получения водорода. [c.430]

    Основным источником сырья для получения нафталина гид-родеалкилированием являются фракции легкого газойля каталитического крекинга с пределами кипения 205—270 °С. Используют также более узкие фракции. Предварительно ароматическую часть экстрагируют жидким сернистым ангидридом или концентрируют другими способами. Деароматизированная фракция представляет собой высококачественный компонент дизельного топлива, а концентрат содержит 95—100% ароматических углеводородов. [c.103]

    Альтернативным источником жидких моторных топлив могут быть синтетические моторные топлива (СМТ), полученные из природного или попутного нефтяного газов. Процесс производства СМТ из природного (ПГ) или попутного нефтяного газов (ПНГ) вюлючает три основные стадии производство синтез-газа (СГ), синтез жидких углеводородов из СГ и облагораживание произведенных жидких углеводородов с получением целевых продуктов (бензин, керосин, дизельное топливо и др.). [c.55]

    Необходимая активность источников была рассчитана исходя из требования получения достаточно хорошей статитеской точности в измерении скорости счета излучения, прошедшего через кювету с исследуемой жидкостью. Этот расчет произведен для случая анализа серы в дизельном топливе на основании соотношешш (8) при А Сд =0,1% серы и д = 0,85 г см . Для расчета была произведена оценка величин, входящих в формулы (6), (7) и (8). [c.114]


Смотреть страницы где упоминается термин Источники получения дизельных топлив: [c.237]    [c.598]    [c.337]    [c.797]    [c.7]    [c.557]    [c.2300]    [c.383]    [c.247]    [c.218]    [c.698]    [c.3]   
Смотреть главы в:

Дизельные топлива -> Источники получения дизельных топлив




ПОИСК





Смотрите так же термины и статьи:

Дизельное топливо



© 2025 chem21.info Реклама на сайте