Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние температуры и давления на вязкость жидкостей

    Причины различного влияния температуры на вязкость капельных жидкостей и газов, а также отмеченного характера влияния давления на вязкость последних обусловлены тем, что вязкость газов имеет молекулярнокинетическую природу, а вязкость капельных жидкостей в основном зависит от сил сцепления между молекулами. [c.27]

    ВЛИЯНИЕ ТЕМПЕРАТУРЫ И ДАВЛЕНИЯ НА ВЯЗКОСТЬ ЖИДКОСТЕЙ [c.60]


    Приведенные уравнения позволяют проанализировать влияние внешних факторов (давления и температуры) на диффузию. В частности, повышение температуры приводит к увеличению коэффициента дифс )узии как газов, так и жидкостей. Увеличение давления в системе уменьшает скорость диффузии в газах, а повышение вязкости жидкости снижает скорость диффузии газа в жидкости. [c.26]

    Влияние характеристик неньютоновских жидкостей на теплоотдачу проявляется в меньшей степени, чем на потери давления, и, как правило, существенно меньше, чем влияние температуры на вязкость. [c.84]

    Помимо температуры, на вязкость жидкостей оказывает влияние давление и некоторые другие физические воздействия. [c.186]

    Как известно [3], влияние давления на вязкость капельных жидкостей сказывается в области высоких давлений. Поэтому, в тех случаях, когда давление не превышает 10 МПа, изменением вязкости от давления пренебрегают. Вязкость, главным образом, зависит от рода жидкости и температуры (табл. 6 и 7). Обычно зависимость вязкости от температуры для различных жидкостей определяется по экспериментальным формулам, графикам, таблицам. [c.11]

    В области высоких давлений (100—400 МПа) вязкость жидкости увеличивается линейно с давлением, а в области более высоких давлений зависимость носит логарифмический характер. Влияние давления и температуры на изменение вязкости тем больш , чем сложнее структура молекулы жидкости. Практически повышение давления на 33 МПа увеличивает вязкость жидкости на величину, которая соответствует примерно понижению температуры на [c.260]

    Относительной вязкостью удобно пользоваться при сравнении вяэ<ости растворов (в качестве % принимают вязкость растворителя), для оценки влияния давления вязкость при атмосферном давлении) и температуры на вязкость жидкостей и при других физико-химических исследованиях. [c.70]

    Изменение давления до 10 МПа мало влияет на изменение вязкости. При больших давлениях его влиянием на изменение вязкости пренебрегать нельзя. Аналитические зависимости вязкости от температуры весьма разнообразны. Отношение коэффициента динамической вязкости к плотности жидкости называется коэффициентом кинематической вязкости, который обычно и применяется в практических расчетах  [c.18]

    Представьте графически зависимость температуры жидкости от безразмерного радиуса (r/R). Влиянием температуры на вязкость и влиянием давления на плотность жидкости можно пренебречь. [c.133]


    Гидродинамические теории течения газов и жидкостей практически одинаковы, но механизмы течения этих систем, т. е. механизмы смещения частиц относительно друг друга, различны. Это подтверждается сравнением влияния температуры и давления на вязкость газов и жидкостей. [c.76]

    В системе СГС единицей кинематической вязкости является стокс (Ст), равный 1 см /с, а единица, в 100 раз меньшая, называется сантистоксом (сСт). С повышением температуры вязкость капельных жидкостей уменьшается, а газов увеличивается. Давление оказывает незначительное влияние на величину вязкости п обычно может пе приниматься во внимание. [c.30]

    Влияние давления на вязкость н идкостей, как правило, очень мало. Приблизительно до 4-10 Па (40 кГ/ м ) это влияние не принимается во внимание. С повышением давления вязкость жидкостей обычно возрастает. Ориентировочно считают, что повышение давления на —32 10 Па (330 кГ/см ) вызывает такое же повышение вязкости, что и снижение температуры на 1 К. При повышении давления до 9, 81 10 Па (1000 кГ/см ) вязкость многих органических жидкостей увеличивается вдвое (для воды это увеличение невелико). Методы, используемые для расчета вязкости жидкости при высоком давлении, приведены в работе Бретшнайдера [8]. [c.33]

    Погрешности, обусловленные влиянием внешних условий, - это температура окружающего воздуха и измеряемой среды, свойства этой среды, давление, магнитные и электрические поля и другие. Характерными примерами могут служить влияние вязкости жидкости на погрешность ТПР, влияние температуры и давления на объем ТПУ и т.д. [c.77]

    Движение молекул небольшого размера через стационарные отверстия или капилляры. Движение жидкости может осуществляться как за счет молекулярного потока, так и за счет потока, обусловленного вязкостью жидкости. В связи с этим на перенос вещества влияет дифференциал давления пара, существующий между входом и выходом из отверстий, а также размер и форма диффундирующих молекул и длина их пути. Рассматриваемый процесс является неактивированным в том смысле, что влияние температуры сказывается только на увеличении [c.470]

    В этой главе рассматриваются вопросы учета сырой нефти при ее дальнейшей транспортировке, не затрагивая вопросов измерения дебита нефтяных скважин. Под сырой нефтью будем подразумевать любую нефть (жидкость), полученную после сепарации, без всякого ограничения содержания каких-либо примесей (воды, солей, механических примесей и т.д.) и перекачиваемую на установки подготовки нефти. Эта жидкость представляет собой сложную смесь нефти, растворенного газа, пластовой воды, содержащей, в свою очередь, различные соли, парафина, церезина и других веществ, механических примесей, сернистых соединений. При недостаточном качестве сепарации в жидкости может содержаться свободный газ в виде пузырьков - так называемый окклюдированный газ. Все эти компоненты могут образовывать сложные дисперсные системы, структура и свойства которых могут быть самыми разнообразными и, самое главное, не постоянными в движении и времени. Например, структура и вязкость водонефтяной эмульсии могут изменяться в широких пределах в процессе движения по трубам, в зависимости от скорости, температуры, давления и других факторов. Всё это создаёт очень большие трудности при учете сырой нефти, особенно при использовании средств измерений, на показания которых влияют свойства жидкости, например, турбинных счетчиков. Особенно большое влияние оказывают структура потока, вязкость жидкости и содержание свободного газа. Частицы воды и других примесей могут образовывать сложную пространственную решетку, которая в процессе движения может разрушаться и снова восстанавливаться. Поэтому водонефтяные эмульсии часто проявляют свойства неньютоновских жидкостей. Измерение вязкости таких жидкостей в потоке представляет большие трудности из-за отсутствия методов измерения и поточных вискозиметров. Измерения, проводимые с помощью лабораторных приборов, не дают истинного значения вязкости, так как вязкость отобранной пробы жидкости отличается от вязкости в условиях трубопровода из-за разгазирования пробы и изменения условий измерения. Содержание свободного газа зависит от условий сепарации и свойств жидкости. Газ, находясь в жидкости в виде пузырьков, изменяет показание объемных счетчиков на такую долю, какую долю сам составляет в жидкости, то есть если объем газа в жидкости составляет 2 %, то показание счетчика повысится на 2 %. Точно учесть содержание свободного газа при определении объема и массы нефти очень трудно по.двум причинам. Во-первых, содержание свободного газа непостоянно и может изменяться в зависимости от условий сепарации (расхода жидкости, вязкости, уровня в сепараторах и т.д.). Во-вторых, технические средства для непрерывного измерения содержания газа в потоке в настоящее время отсутствуют. Имеющиеся средства, например, устройство для определения свободного газа УОСГ-ЮОМ, позволяют производить измерения только периодически и дают не очень достоверные результаты. Единственным способом борьбы с влиянием свободного газа является улучшение сепарации жидкости, чтобы исключить свободный газ или свести его к минимуму. Для уменьшения влияния газа УУН необходимо устанавливать на выкиде насосов. При этом объем газа уменьшается за счет сжатия. [c.28]


    Определение изменения вязкости под влиянием давления у жидкостей, имеющих относительно невысокую температуру, является более простой задачей. Аппараты для этой цели представляют собой вертикально расположенный цилиндрический сосуд, заполненный испытуемой жидкостью. В сосуде создается давление, после чего его поворачивают на 180°. Находящийся внутри сосуда шарик (или груз иной формы) при этом падает. [c.98]

    Для одновременного учета влияния на вязкость жидкости давления и температуры принимаем в соответствии с формулами (1.17) и (1.18) [c.90]

    Рассматривая движения воды, пользуются те.м, что ее вязкость почти не меняется при колебаниях температуры, и учитывают это в коэффициенте фильтрации, который определяет гидравлические характеристики среды. Он имеет размерность скорости - коэффициент Дарси. Это расход жидкости через единицу сечения при гидравлическом градиенте, равном 1. Исследование вязкости показывает, что каждая жидкость при движении придает различный коэффициент фильтрации одной и той же среде. Как и расход, коэффициент Дарси изменяется в обратной зависимости от величины вязкости жидкости. Для того, чтобы освободиться от такого влияния вязкости, нефтяники ввели коэффициенты проницаемости среды, измеряемые в дарси и пермах. Для воды при 20 С они имеют следующие значения 100 дарси = 10 м/с = 10 перм. В дарси давление - в атмосферах и вязкость - в сантипуазах. [c.68]

    Увеличение начальной температуры Го жидких ВВ имеет двойной эффект. Во-первых, с ростом Та возрастает скорость горения жидкости. Одновременно изменяются и критические условия (80) и (93) ввиду убывания т и о (в той мере, в какой растет температура поверхности горящей жидкости) при увеличении начальной температуры (влиянием Та на рг можно пренебречь). Анализ изменения критической обстановки в зависимости от Т показывает, что увеличение Та существенно снижает критическое давление р и скорость 3. Учитывая, что вязкость зависит от температуры экспоненциально, следует ожидать значительно более сильное влияние начальной температуры на устойчивость горения высоковязких систем в сравнении с невязкими. [c.207]

    При сравнительно низких давлениях влияние давления на вязкость жидкостей при постоянной температуре выражается эмпирическим уравнением т] = т]° ехр (КР), где К — постоянная. При высо-ких давлениях для описания весьма сложного влияния давления нриходится вводить другие члены. Как отметил Бриджмен, если влияние давления на большинство свойств ослабевает по мере повышения давления, то для вязкости справедливо обратное. Например, вязкость изопропилового спирта при 30 °С и 30 ООО атм в 1 10 раз больше, чем при Р = 1 атм. Это значение гораздо больше, чем [c.385]

    Конвективный теплообмен происходит благодаря контакту движущейся жидкости и твердой поверхности, имеющих различную температуру. Прн вынужденной конвекции движение вызвано не нагревом жидкости, как это наблюдается при естественной конвекции, а воздействием некоторой внешней силы. Энергия, поступающая извне, необходима для поддержания движения жидкости при этом действуют две силы — давление жидкости, зависящее от скорости потока (V2 Р ) и сила трения, обусловленная вязкостью жидкости ([х dv dy)). Влияние этих сил на теплоотдачу жидкости характеризуется безразмерным параметром — критерием Рейнольдса Не = pvX . Этот параметр характеризует также режим течения в пограничном слое, который самым непосредственным образом определяет теплоотдачу жидкости. [c.55]

    Влияние давления и температуры на вязкость ньютоновских жидкостей. Известно, что увеличение давления и снижение температуры жидкости в подавляющем большинстве случаев приводит к увеличению ее вязкости. [c.65]

    ВЛИЯНИЕ ВЫСОКОГО ДАВЛЕНИЯ НА ВЯЗКОСТЬ ЖИДКОСТЕЙ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ [c.379]

    В настоящей статье невозможно охватить все современные применения вискозиметрии. Поэтому здесь не будут рассмотрены вискозиметры для высоких температур [2], для расплавленных шлаков, металлов, стекол и горных пород. За последнее время эта область вискозиметрии получила в СССР широкое развитие [3]. Не будут изложены здесь применения вискозиметрии при высоких давлениях (особенно важно для смазочных масел [4] и нефти [5]),так же как и вопросы измерения вязкости газов при обычных температурах [6], при высоких температурах до 1600 [7] и при высоких давлениях [8] и сжиженных азов при низких температурах [9], в частности интересные исследования сверхтекучести жидкого гелия [10]. Не будут приведены также специальные типы вискозиметров, например для исследования влияния электрического и магнитного поля [11] на вязкость жидкостей (прибор с плоским капилляром и др.). [c.192]

    Необходимо отметить, что вязкость отличается в одном важном отношении от рассмотренных ранее в этой книге свойств, а именно вязкость является, динамическим неравновесным свойством в макромасштабе. Плотность же, например,— это статическое равновесное свойство. В микромасштабе оба эти свойства отражают влияние движений и взаимодействия молекул. Хотя обычно вязкость называют неравновесным свойством, она является функцией состояния жидкости, как и температура, давление, объем, и может быть использована для определения состояния вещества ). [c.347]

    Влияние температуры на вязкость. Вязкость жидкостей является единственным их свойством, которое резко изменяется с изменением температуры и давления. Причем эта зависимость тем резче, чем более вязкая жидкость. Так, при изменении температуры от 223 до 448° К при постоянном давлении вязкость авиационного масла уменьшается примерно в 100 раз, а при изменении давления от 10 до 10 при постоянной температуре она увеличивается примерно в миллион раз. Так же, как и в случае зависимости поверхностного натяжения от температуры, здесь нет еще общих закономерностей, определяющих зависимость вязкости жидкостей от температуры и давления. Было предложено много эмпирических уравнений, выражающих зависимость вязкости от темпе-)атуры, но каждое из них имеет лишь ограниченное применение. Лростое уравнение, выражающее зависимость вязкости неассоции-рованных жидкостей от их удельного объема, было установлено опытным путем Бачинским в 1913 г. Он нашел следующую зависимость  [c.45]

    Принимая, что высокая вязкость жидкости вызывается внутренним давлением, которое является результатом взаимного притяжения молекул, легко понять и причину высокого отрицательного температурного коэфициента вязкости 31 соответствия его величине самой вязкости. Что с повышением температуры очень сильно возрастает дезагрегирующее тепловое движение жидкости, видно из сильного роста давления при нагревании -лшдкости при постоянном объеме [дР1д1) , изменение другим способом внутреннего давления не должно бы быть велико в этих условиях, поскольку среднее межмолекулярное расстояние остается одним и тем же. Если нагревать жидкость без значительного увеличения внешнего давления, необходимого, чтобы поддерживать ее при постоянном объеме, ее термическое расширение, хотя сравнительно и небольшое, сильно понижает внутреннее давление, вследствие влияния межмолекулярного расстояния на притягательные силы (стр. 20—21). Это уменьшение внутреннего давления вызывает сильное понижение вязкости. Чем выше внутреннее давление, а следовательно, и [c.42]

    Вязкость газов может быть рассчитана с помощью методов, основанных на теоретических предпосылках, но для определения вязкости жидкостей аналогичной теоретической базы не существует. Конечно, вязкости жидкостей значительно отличаются от вязкостей газов, т. е. они много больше по величине и резко уменьшаются с повышением температуры. Вязкость газа при низком давлении обусловлена главным образом передачей количества движения в результате отдельных столкновений молекул, движущихся беспорядочно между слоями с различными скоростями. Аналогичная передача количества движения может также существовать в жидкостях, хотя обычно она малозаметна из-за влияния полей сил взаимодействия между плотно упакованными молекулами. Плотности жидкостей такие, что среднее межмолекулярное расстояние не очень значительно отличается от эффективного диапазона действия таких силовых полей. [c.379]

    Двоякое поведение жидкой воды следует также из большого числа других экспериментальных данных. Так, зависимость плотности воды от температуры и понижение температуры максимальной плотности жидкости с возрастанием давления можно хорошо объяснить, если учесть возможность самоперехода объемной структуры воды в более плотную форму. Таким же образом вызываемые давлением разрушения объемной структуры с образованием в жидкости менее плотных компонентов можно объяснить влиянием температуры на вязкость воды, находящейся под высоким давлением [33]. Данные по поглощению ультразвука водой также согласуются с развитыми представлениями о пребывании воды в виде двух отличающихся по состоянию жидкостей. Минимум, наблюдаемый при 55° на кривой поляризуемость электрона — температура, объясняется термическим разрушением структурных пустот и степенью заполнения этих пустот ближайшими молекулами воды [35]. Кроме этого, близкие значения энергии активации диэлектрической релаксации, ламинарного потока и самодиффузии (4,6 ккал/люль) также позволяют предположить, что лимитирующей стадией для всех этих процессов является разрушение структуры [36]. Количественная обработка такого двойственного поведения воды дает возможность определить степень разрушения водородных связей, которая меняется в зависимости от выбранной модели от 0,1 до 70% при 0° [37]. Очевидно, эти величины относятся к различным моделям или к различным степеням разрушения водородных связей. Как следует из данных по дисперсии рентгеновских лучей, многие физические свойства воды, которые свидетельствуют о ее существовании в двух жидких состояниях, можно объяснить, используя существенно отличающиеся друг от друга модели [29, 38]. Следовательно, точное определение природы менее связанного плотного состояния воды представляет значительную трудность, [c.15]

    Вязкость является функцией взаимного трения молекул, которое зависит от их структуры и пространственного расположения. Поэтому изменение температуры среды оказывает значительное влияние на вязкость. У жидкостей вязкость сильно понижается с повышением температуры и тем больше, чем выше вязкость. У газоь наоборот, с повышением температуры вязкость увеличивается. Согласно А. Г. Касаткину зависимость между вязкостью и температурой для жидкостей нельзя выразить простым соотношением. Однако, существует ряд эмпирических уравнений, которые можно применять для некоторых жидкостей. Влиянием обычных давлений для жидкостей можно пренебречь. [c.24]

    Однако влияние очень больших давлений становится заметным. Так например, при повышении давления с 1 до 1000 ати динамическая вязкость у ртути и воды увеличивается на 30%, у алкоголя, толуола, пентана и эфира в 1,5—2 раза, а у масел в 4 раза, причем с повышением давления влияние его увеличивается. С повышением температуры, наоборот, влияние его уменьшается. Например, у воды, находящейся под давлением 300 ати при температуре 100°, вязкость увеличивается по сравнению с нормальной температурой на 217о, при 200° на 11% и при 300° только на 7%. Если давление среды р (ата), г р ее динамическая вязкость при этом давлении и т]1 динамическая вязкость при 1 ата, то по Стрейцу зависимость динамической вязкости от величины давления у жидкостей можно выразить приближенным уравнением [c.24]

    Экспериментальные исследования влияния гидростатического давления на вязкостные свойства показывают, что пьезоэффект вязкости у расплавов полимеров выражен значительно сильнее, чем у низкомолекулярных жидкостей. Так, при изменении гидростатического давления от 350 до 1750 кгс см эффективная вязкость полиэтилена, определенная при температуре 150°С и скорости сдвига 500 сек увеличилась в 5,6 раза Эффективная вязкость полистирола, определенная при температуре 196° С и скорости сдвига 70 сек , при повышении давления от 140 до 1750 кгс1см увеличилась в 135 раз. [c.53]

    Исследование процесса образования пузырей и капель при истечении жидкостей или газов из отверстий и сопел имеет исключительно важное значение для разработки научно-обоснованных методов расчета колонных аппаратов, в которых межфазная поверхность создается путем диспергирования жидкости или газа. Механизм образования пузырей и капель чрезвычайно спожен и определяется очень большим числом параметров. Параметры, влияющие на процесс образования пузырей, можно подразделить на конструктивные, параметры, связанные со свойствами газов и жидкостей, и режимные параметры. К первому классу относятся диаметр, форма, ориентация и конструкция сопла, а также материал, из которого он изготовлен. Кроме того, чрезвьиайно важным конструктивным параметром для образования пузырей, является объем газовой камеры, из которой происходит йстечение газа в жидкость. К параметрам, связанным со свойствами выбранной системы, можно отнести поверхностное натяжение на границе раздела фаз, плотность и вязкость жидкости и газа, угол смачивания и скорость звука в газе. И, наконец, режимные параметры включают объемный расход диспергируемой фазы, величину и направление скорости сплошной фазы, высоту уровня жидкости в колонне, перепад давления в сопле и температуру. Не все названные параметры равноценны и одинаково важны для процессов образования капель и пузырей, однако большинство оказывает существенное влияние на величину отрывного диаметра и частоту образования диспергируемых частиц. [c.48]

    В настоящее время имеется ряд работ )[1, 2], в которых рассматриваются закономерности неизотермического течения реагирующих материалов с изменяющейся в процессе химической реакции вязкостью. Однако решения, представленные в [1,2 ], справедливы для описания процесса течения ньютоновских жидкостей и не учитывают влияния температуры и давления на их физические свойства. В этой свйзи задачей настоящей работы является создание методики определения температурных и гидродинамических условий течения в плоском канале неньютоновских, химически реагирующих сред, когда степень протекания реакции в жидкости, вытекающей из канала, не превышает заданной величины. [c.50]


Смотреть страницы где упоминается термин Влияние температуры и давления на вязкость жидкостей: [c.798]    [c.148]    [c.288]    [c.134]    [c.167]    [c.308]   
Смотреть главы в:

Основы технологических расчетов в нефтепереработке -> Влияние температуры и давления на вязкость жидкостей

Основы технологических расчётов в нефтепереработке -> Влияние температуры и давления на вязкость жидкостей

Основы технологических расчётов в нефтепереработке -> Влияние температуры и давления на вязкость жидкостей




ПОИСК





Смотрите так же термины и статьи:

Вязкость влияние температуры и давлени

Вязкость температуры и давления

Давление жидкостей

Жидкости вязкость



© 2025 chem21.info Реклама на сайте