Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гелий молекулярный поток

    Пересчет с потока гелия на поток воздуха в стандартных условиях выполняют по формулам, приведенным в 3.1. Молекулярный вес гелия меньше, чем воздуха, а вязкости их примерно равны, поэтому как при вязкостном, так и при молекулярном характерах течения натекание воздуха будет не меньше, чем гелия. Например, если в объекте контроля высокий вакуум как при стандартных, так и при реальных испытаниях, течи-каналы малого диаметра, а Ро.—Р) = Рат. то из (3.15) получим [c.86]


Рис. 5.3-19. Удерживание и градуировка в гель-хроматографии. а—удерживание стандартных соединений в диапазоне молекулярной эксклюзии с величнами К от О до 1 и относительными молекулярными массами от 10 до 1(Я. Последний (пятый) пик соответствует соединению, имеющему химические взаимог ействия с сорбентом б — логарифмическая зависимость между молекулярной массой и объемом удерживаг ния (элюирования) стандартных соединений в—определение молекулярной массы на основании хроматограммы неизвестной пробы. Для этого элюирование должно проводиться в тех же условиях, что и градуировка (объем вводимой пробы, скорость потока). Рис. 5.3-19. Удерживание и градуировка в <a href="/info/141010">гель-хроматографии</a>. а—<a href="/info/1262793">удерживание стандартных соединений</a> в <a href="/info/445171">диапазоне молекулярной</a> эксклюзии с величнами К от О до 1 и <a href="/info/6878">относительными молекулярными массами</a> от 10 до 1(Я. Последний (пятый) пик <a href="/info/636083">соответствует соединению</a>, имеющему химические взаимог ействия с сорбентом б — логарифмическая <a href="/info/25969">зависимость между</a> <a href="/info/532">молекулярной массой</a> и объемом удерживаг ния (элюирования) <a href="/info/2776">стандартных соединений</a> в—<a href="/info/4434">определение молекулярной массы</a> на <a href="/info/142789">основании хроматограммы</a> неизвестной пробы. Для этого элюирование должно проводиться в тех же условиях, что и градуировка (объем вводимой пробы, скорость потока).
    Тлеющий разряд. В случае анализа газовых смесей используют молекулярные эмиссионные спектры испускания. При спектральном определении азота в гелии [358] используется аналитическая линия 3998 А. В случае анализа смесей Аг—N определяют азот в интервале концентраций 10 —1% по полосе молекулярного спектра 3371 А, используя трубку с тлеющим разрядом, работающую при атмосферном или повышенном давлении [692, 693]. В области концентраций 2-10 % среднее отклонение составляет 5-10- %. Спектральное определение азота в аргоне и гелии в потоке при атмосферном давлении с чувствительностью 1-10 — 1-10 % описано в [36а]. Коэффициент вариации 10%. [c.126]

    Колонка 2000 X 2 мм адсорбент молекулярное сито 4А (Юнион Карбайд Корп.), диаметр частиц 0,25—0,31 мм, активированное при 250°С в атмосфере гелия температура колонки —148°С (газовый хроматограф, снабженный криостатом) газ-носитель гелий скорость потока 80 см мин (< в минутах) детектор катарометр проба искусственная смесь. 1 — л-Нг  [c.54]

    Влияние поверхностного потока на процесс разделения определяется избирательностью сорбционного процесса, и, как показано выше, в основном противоположно эффекту разделения за счет эффузии. При сорбции газа поверхностная концентрация компонентов с большей молекулярной массой заметно больше, что влечет уменьшение a ij и даже изменение результата процесса состав проникшего потока обогащается газами с большей молекулярной массой. По-существу, практически почти всегда имеют дело с сорбционно-диффузионными мембранами, поскольку даже для гелия Тс Т) доля поверхностного потока, по данным [3], достигает 13—25%. Газодиффузионный механизм переноса в пористых мембранах является определяющим для легких газов при низких давлениях Р РуС и высоких температурах Т>Тс- Разделение смесей паров углеводородов и других веществ с большой молекулярной массой всегда сопряжено с поверхностными явлениями, вклад которых в общий перенос массы соизмерим с диффузионным [3, 16]. [c.65]


    В большинстве случаев для смесей газов, не содержащих водорода и гелия, может быть принято по воздуху ро = 1,29 кг/нм . Другие характеристики потока — вязкость, теплопроводность, теплоемкость, коэффициенты молекулярной диффузии —при расчете конкретных процессов должны приниматься равными их значениям при рабочих условиях. Интенсивное выравнивание температур в кипящем слое позволяет при этом в большинстве случаев принимать температуру одинаковой во всем аппарате. [c.13]

    Вторым фактором, оказывающим влияние на размывание, является медленность установления диффузионного равновесия. Для уменьшения действия этого фактора следует работать с мелкими частицами геля и при малых скоростях потока подвижной фазы. Кроме того, вследствие зависимости коэффициента диффузии от размеров молекул ВЭТТ при прочих равных условиях зависит от природы разделяемых веществ и возрастает с ростом их молекулярной массы. Диффузия в продольном на- [c.228]

    Высокая проницаемость жестких гелей способствует высоким скоростям потока и эти гели являются наиболее перспективными при высокоэффективных и высокоскоростных разделениях методом молекулярно-ситовой хроматографии. [c.76]

    Кислород и азот анализируют на хроматографах с детектором по теплопроводности. Известно, что увлажнение и загрязнение углеводородами молекулярных сит ведет к изменению сорбционной емкости, ухудшению разделения и, следовательно, надежности анализа, а также к частой регенерации, что снижает производительность анализов. Поэтому для предотвращения этого в хроматографе используют задерживающую колонку, которая обеспечивает ввод на разделяющую колонку хроматографа (цеолиты) только легких компонентов газовой смеси гелия, неона, водорода, кислорода, азота, метана, а этан и другие более высокомолекулярные углеводороды в колонку не вводят, а обратным потоком выводят в атмосферу или на колонку для их разделения. [c.32]

    В заключение необходимо еще раз подчеркнуть, что даже незначительное изменение общего объема хроматографической системы, например замена фитинга колонки, детектора, коммуникации и т.п., и условий эксперимента приводит к росту погрешностей анализа. Поэтому калибровать нужно всю систему в целом. Это особенно важно при работе на современных высокоэффективных колонках с жесткими гелями, когда на разделение полимера с широким ММР расходуется всего 5-15 мл растворителя. Калибровка и анализ образцов должны выполняться в строго одинаковых условиях, при которых отсутствует зависимость удерживаемых объемов от концентрации пробы, скорости потока и температуры. Отклонение рабочих условий анализа от условий калибровки приводит к очень большим погрешностям так, при изменении температуры на 10°С ошибка определения средних молекулярных масс возрастает до 10-20% [19,49], а при изме-нении расхода элюента на 10% - до 50-170% [23, 49]. [c.55]

    В классическом зонном электрофорезе при наложении электрического поля из-за выделения тепла и конвекционных потоков наблюдается искажение зон. Для предотвращения их размывания трубку заполняют гелем или проводят электрофорез на полосках бумаги, пропитанных электролитом. Применение гелей не только уменьшает размывание зон, но способствует более эффективному разделению, которое улучшается за счет молекулярно-ситового эффекта (аналогично эффектам в гель-проникающей хроматографии). Разделение в этом случае основано на различиях в скорости миграции частиц пробы через гель при наложении электрического поля. [c.581]

    Для этой цели применяют молекулярные сепараторы различных конструкций. Наибольшее распространение получили струйные сепараторы, устройство которых показано на рис. 3.4. Принцип их действия основан на различной диффузии легких молекул газа-носителя, используемого в газовой хроматографии, и молекул органического вещества, выходящих со сверхзвуковой скоростью из форсунки сепаратора в вакуумную область. В одностадийном струйном молекулярном сепараторе имеются две форсунки с отверстием небольшого диаметра, которые установлены точно навстречу друг к другу на расстоянии 1 мм. Газовый поток из хроматографа через форсунку 1 подается в вакуумную камеру 2 (давление 10 торр), где молекулы распространяются со скоростями, обратно пропорциональными их массе. В результате более легкие молекулы газа-носителя (обычно гелий) откачиваются насосом, а более инерционные молекулы органического вещества попадают в отверстие форсунки 3, а затем в ионный источник масс-спектрометра. [c.42]

    На рис. 1-11 представлена зависимость диффузионного потока гелия от давления по данным [292]. Ход кривых соответствует предсказаниям теории поток быстро увеличивается в области низких давлений и достигает некоторого постоянного значения при высоких давлениях, когда диффузия имеет почти полностью молекулярный характер. [c.74]


    Для объяснения разницы в восстановлении окиси азота на меди в опытах с окислительной зоной и без нее мы предположили, что в состав газов, поступающих в зону восстановления, в первом случае входит двуокись азота, которая и определяет скорость и степень восстановления окисленного азота до элементарного. Для проверки этого предположения пропускали по 0,5 сж смеси окиси азота и азота (примерно в отношении 1 1) через трубку, заполненную окисью меди при температуре зоны окисления 400 и 840° С и скорости потока гелия 15—50 сл /мин. Конверсионные газы, минуя поглотительную трубку 6, попадали через колонку с молекулярными ситами 13Х в детектор хроматографа 7. Из хромато- [c.46]

    Для типичных задач анализа сложных смесей газов и иаров в интервале интересующих иромышленность концентраций наиболее пригодна газо-жидкостная хроматография с использованием детекторов типа катарометра. При анализе низкокипящих газов целесообразно применять газо-адсорбционную хроматографию с использованием в качестве сорбентов гелей, молекулярных сит, углей II модифицированных сорбентов. Для анализа весьма малых концентраций, а также для анализа высококипящих веществ лучше всего применять капиллярную хроматографию с иопизацнонным детектором. Для обнаружения примесей целесообразно прибегать к термическим методам или газо-жидкостной хроматографип с использованием высокочувствительных детекторов. В экспрессных анализах возможно применение капиллярной хроматографии, а также хроматермографии. Для апа.ппза веществ, сильно различающихся но своим физическим свойствам, пригодны хроматермография и капиллярная хроматография. Наконец, для непрерывного анализа малых примесей в потоке необходимо применять тенлодинамический метод, а для смесей, содержащих высокие концептрации компонентов,— хроматермографию. [c.371]

    Для примера рассмотрим ионизационный манометр, используемый в качестве индикатора, и гелий в качестве пробного газа. При давлении, меньшем 1 х Hg, газы откачиваются независимо друг от друга, при этом поток газов в пароструйный насос является молекулярным потоком и отношение быстроты от1 ачки для гелия и воздуха [c.250]

    Наблюдаемые явления можно объяснить на основании представлений о переносе газов и свободном объеме полимеров . С увеличением свободного объема газопроницаемость полимеров повышается, одновременно возрастает вероятность прохождения газа с большим размером частиц — азота по сравнению с газом с меньшим размером частиц — гелия. В конечном итоге наступает момент, когда размер дырки при элементарном акте диффузии становится столь большим, что разделения газов не наблюдается и поток газа через полимер приближается к молекулярному течению по Кнудсену. [c.229]

    Таким образом, на установке используются три газа— гелий, кислород и водород. Для подачи их в адсорбер с катализатором имеются регулирующие редукторы 2, вентили 3, фильтры 4 и реометры 5. Контактирующие с катализатором газы должны быть хорошо очищены и осушены. Для этого газ пропускают через поглотители колонки с никельхромовым катализатором 6 для до-жига кислорода в потоках гелия и водорода, адсорберы с окисью алюминия 7 и молекулярными ситами 8 для улавливания воды, колонку с платиновым катализатором 9 для очистки водорода от кислорода, адсорберы с аскаритом 10 и пятиокисью фосфора 11. Для периодической регенерации катализаторов и адсорбентов колонки 6—9 имеют электрический обогрев. На линии подачи газа носителя перед адсорбером установлены ртутный манометр 12 и четырехходовой кран 13. [c.91]

    За последние годы широкое применение для разделения высокомолекулярных веществ и определения их молекулярной массы нашел предложенный Л. Поратом и П. Флодином метод гель-фильтрации (гель-хроматографии). Гель-хроматография состоит в фильтровании исследуемого раствора через колонки, заполненные зернами набухающего трехмерного полимера (сефадекса). Набухшие зерна сефадекса представляют собой своеобразные клетки , внутрь которых могут проникнуть путем диффузии только молекулы (ионы) подходящего размера. Более крупные молекулы проходят с фильтрационным потоком мимо зерен сефадекса (рис, 10.8). Набор различных марок сефадексов с возрастающим размером клеток позволяет отделять низкомолекулярньк вещества от высокомолекулярных, разделять макромолекулы, изучать образование ассоциатов в макромолекулярныхрастворах. [c.299]

    В настоящее время все большее значение для спектроскопических исследований приобретает метод, в котором молекулы изучаемого вещества предварительно вмораживаются в кристаллическую решетку инертного газа (матрицу). В такой матрице молекулы изолированы друг от друга, как в газе. Они находятся в контакте лишь с атомами благородно-газового элемента. Сущность метода заключается в том, что молекулярный пучок изучаемого вещества из кнуд-сеновской ячейки вводится в струю благородного газа. Затем этот газовый поток конденсируется на солевом окошке спектрального прибора, охлаждаемом жидким гелием, после чего снимается спектр вмороженных в благородно-газовую матрицу молекул. В связи с тем, что молекулы исследуемого вещества хотя и слабо, но взаимодействуют с материалом матрицы, получаемый спектр [c.169]

    Газ-носитель. В качестве газа-носителя наиболее часто применяют аргон, гелий, азот и водород. Выбор газа обычно зависит от типа детектора. Газы используют прямо из баллонов. Необходимо тщательное удаление воды из газов, для чего используют молекулярные сита. Более тщательная очистка необходима при проведении анализа в условиях программированного изменения температуры колонки и нри работе с высокочувствительными ионизационными детекторами, где примеси искажают пулевую линию. Скорость газа-носителя измеряется вмонтированными в прибор ротаметрами. Она подбирается эксперименталы[о и обычно варьируется в пределах 10—100 см /мии. На воспроизводимость результатов влияет устойчивость газового потока, и поэтому современные приборы снабжены стабилизаторами. [c.296]

    В качестве газов-носителей используются инертные газы (гелий, аргон), а также азот, диоксид углерода и водород. Выбор газа-носителя отчасти определяется детектором. Газ иногда пропускают через молекулярные сита для удаления следов воды. Поток газа обеспечивается избыточным давлением газового баллона, поэтому можно работать без насоса. Чтобы получать восцроизводимые результаты измерений поток носителя следует подцерживать неизменным. [c.248]

    Основным детектором в гель-хроматографе является дифференциальный рефрактометр с чувствительностью 10 -4-10 . Через рабочую и сравнительную кюветы рефрактометра (объемом 10—25 мкл) пропускают соответственно анализируемый раствор полимера и растворитель. При этом с помощью дросселирующего устройства и балластных хроматографических колонок в сравнительной линии выравниваются давление и скорость потоков через рабочую и сравнительную кюветы рефрактометра. Гидравлическая схема хроматографа ХЖ-1303 показана на рис. III. 11. В качестве второго детектора в гель-хроматографе используется фотометрический (спектрофотометрический) детектор. Он обеспечивает, например, непрерывный анализ состава сополимера, синхронный с определением молекулярной массы. Специальные устройства отключают хроматограф при повышении температуры и давления сверх заданных величин. Это обеспечивает автоматическую работу [c.99]

    Заряженные частицы перемещаются в растворе под влиянием электрического поля с различной скоростью. Уже в первой половине нашего столетия для этого явления было введено понятие "электрофорез" или "электрический перенос". Различие скоростей перемещения может быть обусловлено двумя причинами (а) различные молекулы несут на себе различные заряды и поэтому при наложении электрического поля могут ускоряться в различной степени (б) их перемещению препятствует различающееся по величине сопротивление трения. В простейшем случае разделительная среда (раствор электролита) находится в трубке. Из-за отвода Джоулева тепла на практике зачастую наблюдается искажение зон за счет различных плотностей электролита и конвекционных потоков. В случае классического электрофореза применяются гели или полоски бумаги, пропитанные электролитами для того, чтобы уменьшить помехи, вызванные конвекцией, а также чтобы увеличить сопротивление трения макро-молекул с незначительными различиями в зарядах и тем самым усилить эффект разделения. Использование полиакриламидного гель-электрофореза (ПААГ-электрофореза) позволяет проводить эффективное разделение молекул ДНК и белков. Благодаря изменению степени сшивания геля может быть оптимизирована производительность разделения. При использовании гель-электрофореза белков, денатурированных додецилсульфатом натрия (ДДСН), возможно непосредственное определение их молекулярной массы. Разделение в этом случае основано исключительно на затруднении миграции пробы через гель (без геля все денатурированные додецилсульфатом натрия белки перемещаются с одинаковой скоростью). [c.5]

    В качестве ГХ — МС интерфейсов использовали главным образом 1) мембраны из силиконовой резины, 2) эффузиоииые трубки и 3) молекулярный струйный сепаратор [11, 12]. В настоящее время чаще всего применяется молекулярный струйный сепаратор (рис. 5-11). Первое такое устройство было выполнено Райхеджем из нержавеющей стали. Впоследствии молекулярные струйные сепараторы стали изготовлять из стекла. Сепараторы из стекла имеют большую химическую инертность, иронускную способность и чувствительность [11-13, 15]. Принцип действия устройства основан на законе сохранения количества движения. В струйном сепараторе молекулы гелия отделяются от более тяжелых молекул анализируемой смеси. Выходное отверстие сопла имеет очень маленький диаметр, поэтому скорость газового потока, выходящего из колонки ГХ, близка к сверхзвуковой. Анализируемое вещество, обладающее большим количеством движения, проходит расстояние между двумя соплами, а более легкие молекулы гелия отклоняются от прямолинейного движения и откачиваются иасосом. Струйные сепараторы успешно используются для стыковки насадочных и капиллярных кварцевых колонок большого диаметра (> 0,5 мм) с масс-спектрометром. [c.84]

    Неподвижные фазы в эксклюзионной хроматофафии выбирают для решения конкретной аналитической задачи. Первоначально устанавливают, какая система растворителей может быть использована для анализа (водная или водно-органическая), что и определяет тип сорбента. Так, например, разделение водных смесей проводят на сшитых декстранах (сефадекс) или полиакриламиде (биогель Р). С органическими растворителями разделение проводят на гидрофобных полистиролах с различной степенью сшивки (стирогель, порагель, биобид С). Подобные гидрофобные гели обладают хорошей разделяющей способностью только в том случае, если полимер набухает в органическом растворителе. Такие набухшие гели неустойчивы к давлению, скорость потока очень низка. Для эксклюзионной хроматофафии при высоких давлениях колонки заполняют устойчивыми к давлению неподвижными фазами с жесткими матрицами — силикагелями. Недостаток таких сорбентов — высокая адсорбционная активность, которую можно подавить силанизацией поверхности либо выбором подходящего по полярности элюенга (см. разд. 8.7.1). Например, используя в качестве подвижной фазы метиленхлорид ипи тетрагидрофуран, на силикагеле можно разделить по молекулярным массам попистиропы. [c.326]

    Каммермейер и Рутц [166] также предложили полезную корреляцию, приведенную на рис. 1-9. Она дает наглядное представление о роли поверхностной диффузии в общем потоке для некоторых газов и паров. Здесь дана зависимость произведения эффективного коэффициента диффузии при 25 °С на квадратный корень из молекулярной массы ( >1эф YM ) от температуры кипения Тв) или критической температуры Тс диффундирующего вещества. Если принять, что для гелия роль поверхностной диффузии пренебрежимо мала, то разность между кривыми и прямой штриховой линией на графике [c.58]

    По меньшей мере у части рассматриваемых систем механизм массопереноса в геле ближе к поверхностной диффузии, чем к молекулярному диффузионному потоку, осложненному пористостью и извилистостью структуры геля. Так, для гидратации изобутилена на смоле Дауэкс 50 в условиях диффузионных ограничений Гупта и Дуглас [128] нашли, что О ф уменьшается с 5,5-10 при 74 °С до 1,7-10 м2/с при 89 °С (значения О ф вычислены из данных о скорости реакции). Этот результат напоминает данные Бинерта и Гельбина по дегидратации изопропанола на 7-А1гОз в диапазоне [c.148]

    В сферической бомбе создается стационарный турбулентный режим при помощи вращающихся от электромоторов четырех крыльчаток I и 2 на рис. 219). Как показывают измерения, проведенные при помощи электротермоанемометра и аппаратуры, описанной в 18 (за исключением той ее части, которая была предназначена специально для приведения в условиях переменных давлений и температур в цилиндре двигателя), в выделенной для наблюдения части заряда создается поле с одно одной изотропной турбулентностью, при полном отсутствии направленных, в том числе и вихревых, потоков. Здесь поэтому утрачивает смысл понятие об относительной интенсивности турбулентности, и можно говорить лишь об абсолютной ее интенсивности, возрастающей с числом оборотов крыльчаток и одинаковой, при данном напряжении на зажимах электромоторов, для газов с различным молекулярным весом (азот, гелий, водород). Это само по себе является подтверждением того, что здесь движение заряда целиком сводится к турбулентным пульсациям скорости. [c.290]

    В другом приборе химик проводит окисление в камере сгорания, а продукты подаются потоком гелия в восстановительную камеру, где удаляется избыток кислорода и различные окислы азота восстанавливаются до молекулярного азота. Результирующая смесь (СО2, Н2О, N2 и Не) приводится в термическое равновесие под давлением около двух атмосфер, а затем через систему пробоотбора поступает в Ьерию кювет для измерения теплопроводности. Между первой парой кювет находится поглощающая ловушка, содержащая обезвоживающий реагент, который удаляет из потока газа водяные пары. Количество водорода в исходном образце измеряется по разности в теплопроводности, вызванной удалением воды. Аналогичные дифференциальные измерения проводят для второй пары кювет, расположенных по две стороны ловушки, которая удаляет двуокись углерода. Содержание азота в оставшейся смеси гелий — азот определяют сравнением теплопроводности в кюветах со смесью и с чистым гелием. Все сигналы детекторов направляются в самописец, и с помощью соответствующих калибровочных факторов по величине пиков определяют процентный состав образца. После ввода образца процесс производится автоматически вплоть до стадии интерпретации графиков. [c.544]

    В лаборатории разделение изотопов в газовой фазе обычно сопровождается установлением температурного градиента [18071. У одного компонента имеется тенденция концентрироваться в холодной области, у другого — Б горячей [329, 5881. Обычно тяжелые компоненты концентрируются на холодном конце, но это зависит не только от молекулярного веса, но и от сил отталкивания между молекулами поэтому в некоторых случаях разделение обратно изменению температуры или концентрации. Изящный метод разделения изотопов, основанный на термической диффузии, впервые был использован Клузиусом и Диккелем [355 . Смесь изотопов вводилась в кольцевое пространство между длинными вертикальными коаксиальными трубками (вместо внутренней трубки может быть использована проволока). Если внутренняя трубка нагревается, а наружная охлаждается, то разделение происходит по двум следующим причинам. Во-первых, термическая диффузия обусловливает повышенную концентрацию одного из изотопов (обычно тяжелого) на холодной стенке и, во-вторых, вследствие термической конвекции поток холодного газа движется вниз к наружной стенке, а вверх по направлению к внутренней стенке кольцевого пространства движется поток горячего газа. Следовательно, имеется тенденция одного из изотопов перейти в поток, движущийся вниз. Процесс аналогичен каскадному, описанному выще, за исключением того, что дискретное число ступеней заменено непрерывными противоположно направленными потоками. Этим методом были приготовлены очень чистые образцы многих изотопов. Преимущество метода состоит в том, что время пребывания обогащенного материала в установке очень мало, и поэтому метод удобен для концентрирования редких изотопов. Возможности метода иллюстрируются выделением 100 сж Не с концентрацией от 50 до 80%, проведенном Боурингом и Девисом [251], использовавшими в качестве сырья гелий, содержащий 10 % легкого изотопа. [c.459]

    Используя описанный метод изучения стабильности веществ, в работе [321 получили сравнительные кинетические данные термической устойчивости нолиэтилен-гликолей (ПЭГ) разного молекулярного веса и полиэфиров на их основе. На рис. 39 показаны кинетические кривые выделения углеродсодержащих газообразных продуктов деструкции разных ПЭГ процесс проводили в потоке гелия при температуре 250° С. Показано, что с ростом молекулярного веса термостабильность полимеров повышается. Это связано с влиянием на стабильность ПЭГ количества концевых гидроксильных групп. Авторы на основании экспериментальных данных предполагают, что разложение полимера происходит с концов молекулы. При замене концевых гидроксильных групп на остаток малеиновой кислоты термостабильность полиэфиров значительно уменьшается. [c.165]

    Методы элементного газохроматографического анализа используют для определения примесей элементов. Иногда, например в сточных водах, необходимо определить содержание следов углерода. Удобный вариант такого определения разработан Эренбергером [17]. Эренбергер разработал также метод определения следов карбонатов в жидких и твердых отбросах химической промышленности [18]. Образец вводят в разбавленную серную кислоту, вымывают образовавшийся СОз потоком гелия в ловушку-колонку с молекулярными ситами и, десорбируя затем его при нагревании ловушки, определяют СОз катарометром. [c.193]

    Для некоторых образцов методика определения содержания углерода может быть изменена. Например, для определения следов растворенного органического углерода (РОУ) в воде (после удаления неорганиче-ркого углерода) применяют мокрое окисление, активированное ионами серебра в растворе пероксида дисульфата калия в серной кислоте. В результате окисления органических соединений образуется диоксид углерода, который адсорбируют на молекулярных ситах. Затем диоксид углерода десорбируют при нагреве молекулярных сит в потоке гелия и измеряют содержание его, используя катарометр. Определяемый предел концентрации органического углерода в воде составляет 0,2— [c.193]


Смотреть страницы где упоминается термин Гелий молекулярный поток: [c.292]    [c.155]    [c.292]    [c.80]    [c.7]    [c.104]    [c.108]    [c.93]    [c.7]    [c.7]    [c.40]    [c.46]    [c.148]   
Вакуумное оборудование и вакуумная техника (1951) -- [ c.60 ]




ПОИСК







© 2025 chem21.info Реклама на сайте