Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

О применении правила фаз к дисперсным системам

    Такое промежуточное положение ультрамикрогетерогенных систем определяет некоторую особенность в применении к ним правила фаз Гиббса. Если необходимо обратить внимание на гетерогенность, т. е. на наличие поверхности в дисперсной системе, то пользуются соотношением (II. 149), в котором учитывается отдельно дисперсная фаза и соответственно дисперсность  [c.209]


    В дополнение к многочисленным возможным методам исследования нефтяных дисперсных систем, рассмотренным в предыдущем разделе, значительный интерес представляет определение размеров структурных образований в нефтяных дисперсных системах, исключающее воздействия на систему, которые могут существенно нарушить структурную организацию и межмолекулярные взаимодействия в системе, например растворения, воздействия ультразвуком и т.п. Кроме этого, в большинстве случаев необходимость определения размеров связана, как правило, с темными высоковязкими нефтепродуктами. В этой связи перспективными можно считать исследования, направленные на определение структурных образований в нефтяных дисперсных системах, с применением метода вискозиметрии. [c.85]

    VI. 8. О ПРИМЕНЕНИИ ПРАВИЛА ФАЗ К ДИСПЕРСНЫМ СИСТЕМАМ [c.74]

    В случае применения правила фаз к дисперсной системе возникают прежде всего два вопроса, связанные с понятием фазы первый — следует ли считать отдельными фазами поверхности разрыва (поверхностные слои) и второй — является ли сама коллоидная частица (вернее их совокупность) отдельной фазой  [c.74]

    Второе возражение связано с отсутствием истинного равновесия в растворах суспензоидов. Поэтому многие авторы говорят о принципиальной неприменимости правила фаз к дисперсным системам. Однако по существу, применение правила фаз не должно встречать возражений в тех случаях, когда система находится в метастабильном состоянии и свойства ее практически неизменны во времени. [c.75]

    Мы не будем останавливаться на обсуждении вариантности частично закрытых систем, на применении правила фаз к дисперсным системам. Эти вопросы обстоятельно изложены в [3]. [c.22]

    Применение высоких давлений, температур и скоростей, которыми характеризуется современное развитие химии, невозможно без знания механических свойств используемых материалов, в том числе сорбентов и катализаторов. Эти материалы, как правило, являются дисперсными системами. Особенности дисперсных тел определяют иную, отличную от сплошных материалов, зависимость прочности от характера напряженного состояния. [c.255]

    Принципиальная возможность установить объективные различия между гомогенными однофазными и коллоидно-гетерогенными многофазными дисперсными системами, состоящими из тех же веществ, может быть реализована применением некоторых физикохимических методов исследования. Например, рассеяние света гомогенными растворами определяется быстрым возникновением и исчезновением оптических неоднородностей, связанных с флуктуациями плотности, концентрации и анизотропии. Это рассеяние обычно невелико и описывается закономерностями, общими для растворов как низкомолекулярных, так и высокомолекулярных соединений. Рассеяние света в многофазных дисперсных системах, как правило, значительно интенсивнее и подчиняется иным закономерностям. [c.56]


    Как следует из данных лабораторных исследований и подтверждается промышленным опытом, максимальный эффект магнитной обработки водно-дисперсных систем наблюдается при определенных оптимальных условиях (напряженность магнитного поля, скорость потока, температура, число перемен полюсов и др.). Выводы о достигаемом эффекте, как правило, делают на основании определения тех или иных технологических показателей. Критериями для оценки при этом служат сведения о тепловом напоре при работе теплообменных аппаратов, скорости отделения осадка от фильтрата и другие данные в зависимости от области и цели применения магнитной обработки. Однако методы технологического контроля, принятые на предприятии, не всегда могут применяться для оперативного контроля и определения наилучшего режима обработки. В этом случае особое значение приобретают лабораторные способы индикации и оценки воздействия магнитного поля на водно-дисперсные системы. [c.41]

    Эта модель приближенно отражает свойства дисперсных систем, состоящих из твердых макроскопических частиц, плавающих в жидкости на значительном расстоянии друг от друга (разреженная дисперсная система). Применение такой модели для описания движения молекул в жидких фазах вызывает ряд затруднений. Во-первых, между молекулами жидкости имеются химические связи. Движение молекул нельзя рассматривать независимо друг от друга. Во-вторых, ни вращательная диффузия, ни случайные блуждания не соответствуют действительной картине вращательных движений молекул в жидкой фазе. Хотя молекулы, как правило, меняют свою ориентацию на конечный угол, угол поворота не случаен. Он определен ориентациями соседних молекул — возможностями возникновения химических связей при некоторых дискретных взаимных ориентациях соседних молекул. Ориентации ближайших молекул также, как уже говорилось, не произвольны. Наконец, молекулы — не твердые макрочастицы. Они имеют внутренние степени свободы, которые активно участвуют в тепловом движении. Молекулы возбуждаются, дезактивируются. Энергия возбуждения перераспределяется между степенями свободы. Эти явления нель- [c.32]

    Применение правила фаз к дисперсным и капиллярным системам на опыте обычно наталкивается на трудность распознавания дисперсных фаз и определения их числа. Но формула (I. 136) свидетельствует о том, что в этом случае правило фаз видоизменяется. В частности, эта формула показывает, что число дисперсных фаз не влияет на число степеней свободы системы. Для большинства капиллярных систем, изучаемых на практике, г=1. В этом случае правило фаз принимает свою традиционную форму, если под числом фаз понимать число макрофаз в системе, поверхности разрыва которых можно с достаточной степенью точности считать плоскими. [c.37]

    Химический состав водной фазы (дисперсионной среды) синтетических латексов сравнительно прост, а дисперсная фаза обычно состоит из достаточно инертного в химическом отношении и в большинстве случаев гидрофобного вещества. Поэтому едва ли можно ожидать, что при астабилизации этих систем на поверхности частиц могут происходить какие-нибудь реакции, за исключением тех хорошо изученных реакций, в которых участвует стабилизатор. У латексов с гидрофобным полимером сольватация дисперсной фазы, которая может влиять на устойчивость коллоидной системы, безусловно, отсутствует. Сферическая или близкая к сферической форма частиц устраняет влияние на их взаимодействие неровностей поверхности и позволяет считать, что при столкновении двух глобул они ведут себя как два идеальных шарика. Дисперсная фаза латексов, как правило, является диэлектриком, и при электрофорезе можно не учитывать поправку на проводимость частиц. Большая вязкость полимеров позволяет рассматривать латексные глобулы как твердые частицы. Это значительно упрощает трактовку экспериментальных результатов, так как такие частицы не могут деформироваться под влиянием движения окружающей жидкости. Наконец, весьма существенно, что синтетические латексы можно получать с применением почти любого эмульгатора. Это представляет огромное удобство для экспериментатора, изучающего влияние на свойства латекса природы стабилизующих веществ. [c.382]

    Используемые для повышения нефтеотдачи системы, как правило, тоже обладают неньютоновскими свойствами, которые крайне важны для их технологической эффективности. Именно благодаря неньютоновским свойствам такие системы, как растворы полимеров, глинистые суспензии и неорганические гели, нашли широкое применение в нефтяной промышленности как водоизолирующие агенты. Кроме того, для дисперсных систем изучение механических свойств является весьма удобным методом исследования протекающих процессов структурообразования и стабилизации. [c.46]


    Разработана теоретическая трактовка явления разделения с использованием восходящей и нисходящей хроматографии на бумаге, импрегнированной 10% раствором 1-бромнафталина в хлороформе [95[. Элюентом была смесь 1-бромнафталин/пири-дин — вода (1 1 или 2 1). Этот метод применен для анализа большинства С1 дисперсных красителей [95, 96]. Синтезированы также 88 нерастворимых азосоединений и исследовали зависимость их хроматографической подвижности от структуры. Было найдено, что применимость правила Мартина об аддитивности констант групп в бумажной хроматографии ограничена небольшим рядом соединений с одними и теми же межмолекулярными взаимодействиями. В табл. 3.3 приведены результаты хроматографического анализа дисперсных красителей на двух видах бумаги в двух проявляющих системах [24]. [c.87]

    При проведении аналогий между ультрамикрогетерогенными системами и истинными растворами часто обсуждается специфика применения правила фаз Гиббса к этим системам. Возможность применения к золя]и молекулярно-кинетических законов, законов статистики и энтропии позволяет их рассматривать как системы, обладающие свойствами гетерогенно-дисперсных систем и истпн-ных растворов. Частицы истинных гетерогенно-дисперсных систем не участвуют в тепловом движении. С уменьщением размера до величин, отвечающих ультрамикрогетерогеиной области, частицы постепенно теряют свойство фазы — независимость термодинамических свойств от количества фазы. Как уже известно из разд. II. Д, термодинамические свойства частиц в этой области зависят от дисперсности (изменяются внутреннее давление, растворимость, температура плавления и другие параметры). Одновременно частицы начинают участвовать в тепловом движении системы. Чем меньше частицы, тем дальше система от истинного гетерогенно-дисперсного состояния и тем ближе к истинному раство-ру. [c.209]

    Ввиду экономических ограничений к применению теплового воздействия для регулирования фазовой структуры нефти, широкое применение нашли различные химические методы воздействия на дисперсное состояние нефти с использованием разнообразных растворителей и композиций химических веществ. По механизму воздействия на структуру нефти как дисперсной системы предлагаемые растворители и композиции можно разделить на две группы растворители, повышающие растворяющую спо-собностъ дисперсионной среды, и композиции, модифицирующие дисперсную фазу. К первой группе относятся, как правило, органические растворители, обладающие более высокой растворяющей способностью по отношению к твердым парафинам и асфальтенам, чем сама нефть. При добавлении растворителей этой группы к нефтям предотвращается или существенно снижается образование дисперсной фазы, что уменьшает образование отложений. При смешении этих растворителей с нефтью растворяющая способность образующейся смеси повышается практически аддитивно, поэтому для существенного повышения растворяющей способности дисперсионной среды требуется добавлять растворители в соотношениях, сопоставимых с количеством самой нефти. Это обстоятельство делает энергетически маловыгодным широкое применение веществ этой фуппы, поэтому они находят применение лишь в профилактических методах, когда объем растворов незначителен. [c.136]

    Методы определения устойчивости с применением растворителей используются, как правило, для изучения склонности к расслоению асфальтеносодержащих нефтяных дисперсных систем. Для этой цели применяют, например, фотоколориметричес-кий метод, основанный на центрифугировании разбавленной заданным растворителем нефтяной системы и последующем определении с помощью фотоэлетроколори-метра концентрации асфальтенов в верхнем и нижнем слоях центрифугата. По результатам испытаний рассчитывается фактор устойчивости Ф нефтяной дисперсной системы  [c.72]

    Следовательно, лиофобные золи всегда находятся в неустойчивом (или мало устойчивом, или ложном) равновесии. Предоставленные сами себе, подчиняясь второму закону термодинамики, они переходят в иную, более устойчивую, с меньшим запасом свободной энергии, форму своего существования путем уменьщения общей поверхности их дисперсной фазы, т. е. путем слипания частиц. Растворы ВМС ведут себя по другому полученные путем самопроизвольного процесса растворения, т. е. с уменьшением запаса свободной энергии, они являются системами термодинамически устойчивыми, или, иначе говоря, находятся, кзк всякий раствор, в устойчивом термодинамическом равновесии. Что это действительно так, было экспериментально подтверждено В. А. Каргиным, показавшим на ряде растворов ВМС подчиняемость их правилу фаз. Если во многих случаях применение правила фаз для этих систем встретило большие затруднения, то это объясняется тем, что достижение истинного равновесия в этих системах часто требует очень длительного времени, измеряемого иногда месяцами и даже годами. [c.153]

    Основное применение (со)полимеров АА - использование в качестве флокулянтов. Большая часть производимых в СССР и во всем мире (со)полимеров АА находит практическое применение в качестве флокулянтов в горнодобывающей, бумажной, металлургической, легкой, пищевой, угольной, не фтедобывающей промышленности. Более подробно остановимся именно на этой области применения (со)полимеров АА. Действие высокомолекулярных водорастворимых флокулянтов [в том числе и (со)полимеров АА] основано главным образом на двух механизмах. Первый - мостичный механизм флокуляции макромолекулы адсорбируются на взвешенных частицах, связывая их в единый ансамбль - флокулы [24]. Второй - нейтрали-зационный механизм флокуляции заряженные макроионы адсорбируются на заряженных дисперсных частицах, нейтрализуя их и тем самым снижая кинетическую (седиментационную) устойчивость системы [25]. Для (со)полимеров АА высокой молекулярной массы определяющим является, как правило, мостичный механизм флокуляции. Эффективность действия (со)полимеров АА для реальных дисперсных систем зависит от большого числа параметров, во многих случаях затруднена оценка влияния каждого конкретного фактора на результирующий макроскопический флокулирующий эффект, поэтому возникла необходимость всесторонних исследований (со)полимеров АА как флокулянтов прежде всего на модельных дисперсных системах (ДС). В качестве модельных ДС были апробированы охра, каолин и оксид меди. Влияние различных факторов на флокулирующие показатели (со)-полимеров АА приведено в обзоре [26]. Эксперименты были спланированы таким образом, чтобы обеспечить конкретную оценку влияния лишь одного параметра системы при сохранении неизменными всех других параметров. Рассмотрим влияние отдельных факторов на процесс флокуляции (со)полимеров АА в модельных ДС. При использовании ПАА и сополимеров на основе АА для ускоренной седиментации реальных ДС концентрация дисперсной фазы Сд может изменяться в широких пределах - от 0,002 до 40-50%. С ростом Сд закономерно уменьшается расстояние между частицами, растет суммарная поверхность раздела фаз. На модельных ДС были изучены особенности флокуляции (со)полимерами АА при варьировании Сд включая и область стесненного оседания (Сд>3%) [25]. Для количественной оценки флокупирующего эффекта используется безразмерный параметр В [27] D = v/vo-l, где м и о скорость седиментации соответственно с добавкой и в отсутствие флокулянта. Если Б > О, то полимерная добавка выступает в роли флокулянта, и чем больше О, тем выше флокулирующий эффект за счет вводимой добавки. Если же О < О, то вводимая добавка полимера работает как стабилизатор, т. е. способствует повышению седиментационной устойчивости системы. Использование относительного параметра В вместо V для оценки флокули- [c.175]

    На первый взгляд кажется, что для дисперсных систем правило смесей должно хорошо оправдываться. Коллоидная частичка состоит из большего количества молекул или атомов, причем взаимодействие между ними не меняется при образовании дисперсной фазы, если не считать частичек, находящихся в поверхностном слое. Поэтому можно предположить, что вещество в дисперсном состоянии имеет ту же диэлектрическую постоянную, что и в недиспергированном, а дисперсионная среда — неизменную диэлектрическую постоянную, и в большинстве случаев концентрация дисперсной фазы невелика. И тем не менее правило смешения с применением уравнения Клаузиуса — Мо-сотти для дисперсных систем оправдывается почти всегда гораздо хуже, чем для истинных растворов. Это свидетельствует о том, что в коллоидных системах есть вторичные явления, влияющие на диэлектрическую постоянную, т. е. поверхностные явления. Вполне естественно предположить, что диэлектрические свойства коллоидного раствора, как и другие его свойства, зависят от взаимодействия поверхности дисперсной фазы с дисперсионной средой, а также от адсорбционных процессов в поверхности раздела. [c.106]

    Молекулярная теория возникла почти одновременно с мнцел- лярной. Ее сторонниками, в частности Штаудинтером, было показано, что растворение полимеров, как и низкомолекулярных веществ,. идет с уменьшением свободной энергии, т. е. самопроизвольно, тогда как при образовании гетерогенной коллоидной системы свободная энергия возрастает в результате увеличения поверхности дисперсной фазы. Одним из доказательств того, что растворы полимеров термодинамически устойчивы и обратимы, является применение к ним правила фаз Гиббса. Наиболее важной в этой области является работа В. А. Каргина, С. П. Папкова и 3. А. Роговина но исследованию растворов ацетата целлюлозы в различных растворителях. Авторы показали, что в случае ограниченной растворимости ацетата целлюлозы в выбранном растворителе после расслаивания системы на две фазы каждой температуре отвечает определенная концентрация ацетата целлюлозы как в нижнем, так и в верхнем слое. Процесс оказался строго обратимым и термодинамически равновесным, т. е. концентрации слоев были неиз менны при данной температуре, как бы к этой температуре ни подходили— путем нагревания смеси или ее охлаждения. Кроме того, вид диаграммы для этой и других изучаемых авторами систем ацетат-целлюлоза— растворитель был аналогичен диаграммам состоя.ння низкомолекулярных ограниченно смешивающихся жидкостей. [c.150]

    Зная принципиальный механизм действия ПАВ, можно более обоснованно провести их выбор. Однако ввиду разнообразия условий применения (ионный состав используе.мой воды, характер поверхности, тип загрязнения, дисперсность и устойчивость системы и т. д.) для каждого кодкретного случая выбор ПАВ проводится после определенных исследований, в результате которых, как правило, приходят к разработке композиций ПАВ. При.чеденный ассортимент служит лишь в качестве основного ориентира при разработке таких композиций. [c.320]

    Особенно сложным при приготовлении этой группы лекарств является выбор метода стерилизации, поскольку при тепловой стерилизации взвесей происходит укрупнение частиц дисперсной фазы, а при тепловой стерилизации эмульсий — еще и окисление ненасыщенных жирных кислот. Поэтому суспензии для парентерального применения, как правило, приготавливакуг из стерильных порошков определенной степени дисперсности непосредственно перед введением или используют методы стерилизации, обеспечи-ваюпще физическую стабильность лекарственной системы (радиационную, стерилизующую фильтрацию). [c.177]


Смотреть страницы где упоминается термин О применении правила фаз к дисперсным системам: [c.5]    [c.4]    [c.241]    [c.442]    [c.24]    [c.188]   
Смотреть главы в:

Курс коллоидной химии 1974 -> О применении правила фаз к дисперсным системам




ПОИСК





Смотрите так же термины и статьи:

Дисперсные системы

Правило фаз в применении



© 2025 chem21.info Реклама на сайте