Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление жирных кислот ненасыщенных

    В состав природных жиров входят насыщенные (предельные) и ненасыщенные (непредельные) жирные кислоты. Ненасыщенные жирные кислоты могут быть олефиновыми, содержащими двойные связи, и ацетиленовыми, содержащими тройные связи. Последние в природных жирах встречаются очень редко. В жирах могут находиться кислоты, содержащие гидроксильные группы (гидроксикислоты) и карбонильные группы (кетокислоты). Эти кислоты встречаются в жирах, подвергшихся окислению молекулярным кислородом или другими окислителями. [c.10]


    Остановимся теперь на вопросе об окислении ненасыщенных жирных кислот, таких, например, как олеиновая. На первый взгляд кажется, что ненасыщенные жирные кислоты можно считать промежуточными продуктами окисления насыщенных жирных кислот. В самом деле, при р-окислении жирных кислот первой стадией этого процесса является образование ненасыщенной жирной кислоты после отщепления двух водородов в положении а и р. Можно было бы думать, что олеиновая кислота также получается в организме при окислении стеариновой кислоты путем отщепления двух водородных атомов в положении 9 и 10. [c.311]

    Несмотря на ряд методик (приводимых в этой главе), позволяющих проводить исследование довольно сложных смесей, с целью наиболее полной идентификации следует рекомендовать предварительное фракционирование природной смеси кислот на насыщенные и ненасыщенные (например, на силикагеле, в виде ртутных производных метиловых эфиров, с помощью низкотемпературной кристаллизации, спирто-свин-цовым методом), а последних — в тонком слое силикагеля или на колонках, как это представлено в соответствующих разделах. Разветвленные жирные кислоты от неразветвленных можно разделить с помощью мочевины. В том случае, когда исследователя интересуют только насыщенные жирные кислоты, ненасыщенные можно удалить путем их окисления. [c.6]

    Состав жирных кислот. Ненасыщенные жирные кислоты различаются ио реакционной способности, зависящей от количества и расположения в них двойных связей. Было показано , что скорость окисления триглицеридов олеиновой, линолевой и линоленовой кислот находится в соотношении 1 120 300. [c.61]

    В результате р-окисления жирная кислота в конце процесса распадается с образованием ацетильного производного кофермента А ( активная уксусная кислота ). Последняя через цикл три-карбоновых кислот окисляется до СО2 и воды. Ненасыщенные жирные кислоты путем присоединения водородов по месту двойных связей сначала превращаются в насыщенные, а затем протекает их окисление. [c.65]

    По теории Кноопа, жирная кислота дегидрируется, превра-щ аясь в ненасыщенную кислоту, затем к этой кислоте присоединяется молекула воды с образованием соответствующей оксикислоты. Оксикислота вновь дегидрируется и дает кетокислоту, а при присоединении воды к кетокислоте отщепляется уксусная кислота, и исходная молекула жирной кислоты становится на два углеродных атома короче. После этого молекула жирной кислоты может вновь претерпевать серию указанных превращений, укорачиваться еще на два углеродных атома и т. д. В связи с тем что в этой цепи реакций окислению подвергается р-(З-) углеродный атом, данный процесс получил название р-окисления жирных кислот. [c.319]


    Смоляные кислоты являются ненасыщенными веществами. Они легко присоединяют галоиды и водород. При определении йодного числа канифоли насыщение галоидом увеличивается по мере удлинения срока воздействия галоидного раствора. Канифоль окисляется кислородом воздуха особенно легко, когда она истерта в порошок. Соединения, полученные окислением канифоли, отличаются от продуктов окисления жирных кислот — не имеют прогорклого запаха. В присутствии некоторых катализаторов канифоль может гидрироваться. [c.50]

    Такую аппаратуру, с незначительными изменениями, применяют для измерения расхода кислорода при окислении жирных кислот и масел, для изучения каталитической гидрогенизации ненасыщенных органических соединений, а также для большого числа разнообразных биохимических реакций. В главе 5 упоминалось о применении этой аппаратуры [c.365]

    В состав растительных и животных жиров входят различные насыщенные и ненасыщенные жирные кислоты и их глицериды, причем предельные кислоты и их глицериды преобладают в твердых (в частности, в животных) жирах, а непредельные — в жидких — (растительных). Наличие в жирах непредельных соединений приводит к получению менее химически стабильного загустителя, склонного к окислению и разложению. [c.188]

    В качестве подвижного растворителя для разделения насыщенных и ненасыщенных жирных кислот от Си до С24 включительно с нормальной цепью применяют раствор 95% уксусной кислоты, насыщенный парафиновым маслом при 35—40°. Для разделения критических пар жирных кислот ненасыщенные жирные кислоты удаляют окислением, используя смесь ледяной уксусной кислоты и пергидроля (9 1), насыщенную парафиновым маслом при 35—40°. Обнаруживают только насыщенные жирные кислоты вследствие окисления ненасыщенных. [c.20]

    Свет, поглощаемый красителями (протопорфирином IX и др.), вызывает сенсибилизированное окисление жирных кислот, причем эффективность их фотоокисления возрастает по мере увеличения ненасыщенности жирных кислот. В ряде работ показана роль синглетного кислорода в этом процессе. Как в модельных липидных системах, так и в биологических мембранах возможно фотодинамическое перекисное окисление липидов, протекающее по типу цепной реакции с образованием свободных радикалов. Сенсибилизированное перекисное окисление липидов зарегистрировано в наружных сегментах палочек сетчатки (сенсибилизатор — родопсин) и в мембранах эритроцитов (сенсибилизатор — протопорфирин). [c.344]

    Свойства жира у различных культур зависят от содержания в нем ненасыщенных (олеиновая, линолевая, линоленовая и др.) и насыщенных (пальмитиновая, стеариновая и др.) жирных кислот. Ненасыщенные жирные кислоты легко присоединяют кислород, и жир окисляется. Показателем содержания ненасыщенных кислот в жире является йодное число (количество граммов йода, которое необходимо для окисления 100 г Жира). Чем выше йодное число, тем быстрее жир высыхает (табл. 5). [c.71]

    Кальциевые и магниевые мыла не обладают моющим действием, они представляют собой сероватые липкие хлопья, оседающие на ткани в виде загрязнений. При этом ткань приобретает сероватый оттенок. Оседая на ткани, известковые мыла снижают также ее прочность, так как радикалы ненасыщенных жирных кислот при сушке тканей легко окисляются кислородом воздуха, а образующиеся при этом вещества перекисного характера обусловливают усиленное окисление целлюлозы. [c.144]

    Из табл. 5 видно, что многие параметры нефти связаны с величиной отношения п/ф, т.е. зависят от степени окисленности исходного ОВ. Наличию некоторых связей можно дать объяснение, другие пока не столь очевидны. Например, понятна связь значений п/ф с содержанием алканов в нефти. Очевидно, что доля метановых УВ возросла за счет низкого содержания нафтенов и аренов. Основным источником циклических соединений в нефти, вероятно, являются полиненасыщенные жирные кислоты. Но ненасыщенные кислоты крайне неустойчивы в присутствии кислорода и очень легко окисляются. Можно предположить, что в окислительной обстановке ненасыщенные кислоты, входящие в состав исходного ОВ, окисляются и не участвуют в процессах нефтеобразования, т.е. из такого ОВ образуется мало циклических структур. В этой обстановке в составе ОВ будут преобладать наиболее химически и биохимически инертные насыщенные жирные кислоты, которые и дадут в будущем высокопарафинистые нефти. [c.26]

    Совершенно иная ситуация складывается в окислительной обстановке. Высокие значения п/ф указывают на интенсивное окисление ОВ в аэробных условиях. Легко окисляемые ненасыщенные жирные кислоты, а также компоненты белково-углеводного комплекса практически полностью выводятся и не участвуют в процессах нефтеобразования. Процесс сульфатредукции идет очень слабо. Отсутствие ненасыщенных структур резко сокращает возможность образования нафтеновых и ароматических структур. Все вместе это приводит к накоплению ОВ, из которого затем образуются нефти с низким содержанием серы, азота, нафтеновых и ароматических соединений. В этих условиях остаются химически и биохимически инертные компоненты исходного ОВ — насыщенные жирные спирты и кислоты, которые в будущем становятся основным материалом для образования легких парафинистых нефтей. С этих позиций легко объяснить данные табл. 38. В принципе не может быть больших и уникальных запасов нефтей малосернистых и высокопарафинистых. И, наоборот, нефти повышенной плотности, сернистые, служат прямым указанием на высокий генерационный потенциал нефте- [c.136]


    Физиологическое действие витамина Е [9] обусловлено его участием в окислительно-восстановительных реакциях организма. Это действие, по-видимому, сводится к задержке процессов окисления и интенсификации обмена кислорода в тканях. а-Токоферол является антикоагулянтом и предотвращает коагуляцию крови в сосудах предохраняет витамин А и ненасыщенные жирные кислоты от окисления. [c.315]

    Окисление ненасыщенных жирных кислот [c.312]

    Из электрохимических производств, основанных на использовании электролиза для проведения окислительных или восстановительных реакций, можно назвать электрохимическое окисление Na l в Na lOa производство перхлоратов окислением хлоратов электрохимическое получение хлорной кислоты при обессоливании морской и минерализованных вод электролизным методом получение диоксида хлора и т. д. В органической химии процессы электролиза используются в реакциях катодного восстановления нитросоединений, иминов, имидоэфиров, альдегидов и кетонов, карбоновых кислот, сложных эфиров, а также в реакциях анодного окисления жирных кислот и их солей, ненасыщенных кислот ароматического ряда, ацетилирова-ния, алкилирования и др. [c.357]

    Присоединение воды к гранс-а,р-ненасыщенным производным СоА катализируется еноил-гидратазой (кротоназой) митохондрий и представляет собой очень важную стадию в окислении жирных кислот [108, 109]  [c.146]

    При окислении жирных кислот с двумя и более ненасыщенными связями в одном из циклов р-окисления образуется кислота с двойной связью в положении 2—3, но с г<мс-геометрией, и в качестве продукта следующей реакции гидратации образуется О-р-гидроксиацил-КоА, который НАД-зависимая ацил-КоА-дегидрогеназа не может использовать в качестве субстрата. Превращение О-р-гидроксиацил-КоА в Ь-изомер катализирует второй дополнительный фермент — эпимераза. [c.334]

    ТОЛЬКО одинарные связи. Между тем, как мы уже знаем, большая часть жирных кислот, обнаруживаемых в триацилгли-церолах и фосфолишвдах животных и растений, принадлежит к ненасыщенным и содержит одну или большее число двойных связей (разд. 12.1). Эти двойные связи имеют г ис-конфигура-цию кроме того, они обычно не занимают в углеродной цепи того специфического положения, в котором только и может их атаковать еноил-СоА—гидра таза-фермент, катализирующий в норме присоединение Н2О по двойной связи Д -еноил-СоА, образующегося при Р-окислении жирных кислот. [c.560]

    Превращение ацетоацетил-КоА в бутирил-КоА, так же как и превращения более сложных р-кетоацил-коэнзимов А в насыщенные ацил-коэн-зимы А, можно рассматривать как обращение реакций Р-окисления жирных кислот. Однако восстановление р-кетоацил-коэнзимов А и ненасыщенных в а — р-положении ацил-коэнзимов А происходит в процессе синтеза высших жирных кислот за счет не НАД. На, а НАДФ. На. [c.311]

    Выделенные жирные кислоты, неокисленные и окисленные, растворяют в хлороформе в количестве, равном объему сыворотки, из которой были выделены жирные кислоты, наносят на бумагу (0,12—0,14 мл раствора неокисленных и 0,16—0,18 мл раствора окисленных жирных кислот). Хроматографирование ведут по способу, описанному для количественного анализа. Количество ненасыщенных кислот определяют по разнице между общим количеством и количеством насыщенных жирных кислот. [c.34]

    Несмотря на то что простые а. -ненасыщенные кислоты не имеют большого значения для биохимии, их производные часто являются промежуточными соединениями при синтезе и распаде длинноцепочечных жирных кислот, входящих в состав животных жиров (разд. 8.11). Ферментативные процессы распада суммированы в нижеприведенной схеме. Окисление (превращение в непредельное соединение) насыщенного ацилкофермента А проходит с образованием сложного эфира сопряженной ненасыщенной кислоты, который присоединяет элементы воды, возможно за счет нуклеофильной атаки. Образовавшийся р-гидрокси-ацилкофермент А окисляется в соответствующий р-оксоацилко-фермент А. Затем этот интермедиат расщепляется при взаимо-.действии с тиольной группой другой молекулы кофермента А. [c.259]

    Реакция окисления. Значительное количество работ посвящено изучению изменения поглощения в ультрафиолетовом спектре, происходящего нри окислении жирных кислот, сложных эфиров и жиров, в том числе высыхающих масел . Увеличение поглощения в процессе окисления обусловлено, как полагают, наличием сопряженных ненасыщенных систем, содержащих карбонильные группы, нли сопряженных полиенов, образующихся при енолизации этих снстем22, [c.594]

    Хотя процессы, в которых происходит окисление жирных кислот в присутствии кислорода, исследовались довольно широко [4,5], лшпь сравнительно недавние работы по изучению перекисного окисления липидов при различных заболеваниях [ 6 - 83 и при радиационном распаде биомолекул показали, что значительнь1й интерес представляет детальное понимание молекулярных параметров, определяющих характер и глубину протекания перекисного окисления. Было показано, что под действием ионизующей радиации в определенных условиях при распаде жирных кислот в присутствии кислорода количество образующихся продуктов, выраженное в молях, значительно превосходит количество первоначально образовавшихся радикалов [ 11]. Этот факт говорит о цепном характере процесса, общий механизм которого по аналогии с описанным для перекисно— го окисления олефинов может быть предложен и для ненасьшенных жирных кислот [12]- Под Н ниже подразумевается а-метиленовый атом водорода, связанный с ненасыщенным фрагментом. В систе-ких с несопряженными связями это, вероятно, аллильный водород при центральном атоме углерода. [c.328]

    Синтез низксмэлекулярных жирных кислот благодаря обратимости промежуточных этапов процесса окисления жирных кислот удалось осуществить в опытах in vitro при использовании препаратов очищенных ферментов. Поскольку два этапа процесса окисления жирных кислот сопровождаются реакциями окисления (дегидрирования окисленной жирной кислоты с образованием ненасыщенной кислоты и окислением р-оксикислоты с образованием р-кетокислоты), то понятно, что при обращении процесса Р-окисления, т. е. при синтезе жирной кислоты, должны происходить реакции восстановления ненасыщенной жирной кислоты и Р-кетокислоты. Эти реакции восстановления осуществляются с помощью фермента, в состав которого входит восстановленный трифосфопиридиннуклеотид (ТПН-Н2) при восстановлении р-кетокислоты в р-оксикислоту и фермента, в состав которого входит восстановленный дифосфопиридиннуклеотид (ДПН-Н,) при восстановлении ненасыщенной жирной кислоты. THH-Hg и ДПН-Ь . при этом окисляются в ТПН и ДПН. С другой стороны, в результате окисления различных орга1шческих веществ в тканях организма ТПН и ДПН восстанавливаются с образованием ТПН-Н., и ДПН-Но. Иначе говоря, синтез жирных кислот происходит при обязательном окислении иных веществ. [c.317]

    Витамин С участвует в реакциях гидроксилирования в биосинтезе коллагена, серотонина и норадреналина в организме животных. И все же очень важна его роль там, где он главным образом и синтезируется, а именно в хлорофиллсодержащих растениях. В некоторых из них аскорбиновая кислота содержится в довольно больших количествах, а скорость ее синтеза в прорастающих семенах очень высока. Несмотря на это, о роли витамина С в процессе метаболизма известно очень мало, за исключением того, что он необходим для синтеза ксантофилла, некоторых ненасыщенных жирных кислот (окисление жирных кислот), а также, возможно, участвует в транслокации, упомянутой выше. Ключ к решению вопроса о роли аскорбиновой кислоты в процессе метаболизма у животных может быть найден, исходя из результатов анализа ее тканевого распределения. Проанализированные животные ткани содержат следующие количества витамина С (в убывающем порядке) надпочечники (55 мг%), гипофиз и лейкоциты (белые кровяные клетки), мозг, хрусталики глаз и поджелудочная железа, почки, селезенка и печень, сердечная мышца, молоко (женское 3 мг%, коровье 1 мг%), плазма (1 мг%). В большинстве этих тканей функция витамина С заключается в поддержании структурной целостности посредством участия в биосинтезе коллагена. Во- [c.109]

    Большое внимание уделяют вопросам образования осадка (в результате окислительных процессов) не только в электроизоляционных, но и в турбинных и автомобильных маслах. Химизм этого явления еще не вполне ясен, но, по-видимому, имеет место полимеризация и конденсация продуктов окисления (таких как оксо-и ненасыщенные спирты, альдегиды, кетоны и кислоты) в малорастворимые соединения. В литературе сообщается, что при окислении образуются гидрооксикислоты нафтенового и жирного рядов [90], а также их ангидриды [91]. Окисление трансформаторных масел в отсутствие или присутствии катализаторов, роль которых могут играть соли металлов и жирных кислот 2 —Сдз [92], или неметаллические детали трансформатора (такие, как лак на обмотках, фарфоровые изоляторы и т. д. [93—96], идет с такой же кинетикой, как и окисление углеводородов в других нефтепродуктах [97—102]. Происходящая цепная реакция в промышленной практике может быть успешно ингибирована добавлением небольших количеств антиокислителей, вследствие чего срок службы [c.566]

    В настоящее время основным сырьем для производства высших жирных спиртов методом каталитической гидрогенизации служат метиловые и бутиловые эфиры кислот С,— is- Их получают этерификацией соответствующих фракций синтетических жирных кислот (продуктов окисления парафина) или переэтери-фикацией природных жиров (триглицеридов). Сами же природные жиры применяются как сырье для гидрогенизации в относительно небольших масштабах. Переработка свободных жирных кислот, начавшаяся в последние годы, имеет тенденцию к расширению. В табл. 1.8 приведены характеристики и составы кислот, получаемых из различных видов сырья, используемого в промышленных процессах гидрогенизации. Жирные кислоты природных жиров представлены насыщенными и ненасыщенными кислотами с прямой цепью, содержащими четное число углеродных атомов в молекуле. Состав фракций синтетических жирных кислот более сложен. В них присутствуют насыщенные монокарбоновые кислоты с четным и нечетным числом углеродных атомов-как с нормальной, так и с разветвленной цепью, а также дикарбоновые, ненасыщенные и нафтеновые кислоты, кетокислоты и оксикислоты. По другим данным, в промышленных фракциях кислот С]о— ia содержится [в % (масс.)] кислот с разветвленной цепью — 30—35 днкарбоновых кислот— 1,5—4 окснкислот и лактонов— 1—2 неомы-ляемых веществ — до 3. [c.28]

    Х становлепо, что а-связь активируется близостью ие только ( Н,-группы, но и таких групп, как Q.H , СО или OOR. Образование перекисей по а-метилеьовому механизму облегчают также ато-Н при третичном углероде. Конкретно по такому механизм 1 )отекает окисление ненасыщенных жирных кислот. [c.235]

    В последние роды много работали над выяснением мсханиз.ма биологического р-окисления. Проведенные исследования прежде всего показали, что первичным процессом является дегидрирование жирной кислоты в а, р-положении, после чего происходит присоединение воды к а, р-ненасыщенной карбоновой кислоте  [c.246]

    СНз (СН2),СН = СН (СН2),С00Н и пальмитиновая СНд (СН2)14СООН кислоты. В природных Ж. кроме триглицеридов присутствуют различные примеси свободные жирные кислоты, моно- и диглицериды, фосфатиды, стерины, витамины и др. Известно более 1300 видов Ж- Животные Ж.— твердые вещества (за исключением рыбьего жира), растительные (масла) — жидкие (кроме жира кокосового ореха). В состав животных Ж. входят главным образом насыщенные кислоты — стеариновая и пальмитиновая, в состав растительных — ненасыщенные кислоты. Масла можно превратить в твердые Ж- путем гидрогенизации. Ж- нерастворимы в воде, но могут образовывать с ней стойкие эмульсии. Ж. хорошо растворяются в органических растворителях. Характерной особенностью многих растительных Ж. является способность высыхать с образованием на поверхности, покрытой жиром, твердой эластичной пленки. Высыхание заключается в окислении и полимеризации соответствующих жиров за счет остатков ненасыщенных кислот. При действии на триглицериды водяного пара они омыляются с образованием свободных жирных кислот и глицерина  [c.98]

    Другие токоферолы (р, у, б, е, ) имеют несколько отличающиеся формулы. Токоферолы — масла желтого цвета. Витамин Е требуется крысам для воспроизведения и лактации, по-видимому, он необходим и человеку для поддержания здоровья. Одна МЕ равна 1 мг о,ь-а-токофе-рилацетата (0,74 мг о-ацетата, 1,36 мг ь-ацетата). Витамин Е —важнейший жирорастворимый антиоксидант он предотвращает изменение состава тканей, в частности разрушение ненасыщенных жирных кислот в результате их окисления. У животных, испытывающих недостаток в витамине Е, развивается дистрофия мышц и заболевание сердца. [c.416]

    Первый тип ОВ образуется в условиях восстановительной обстановки и отсутствия защитного минерального скелета у планктона (см. рис. 17,а). Эти условия приводят к тому, что большая часть липидной фракции с легким и.с.у. выводится из зоны активного окисления. Основу этой фракции составляют ненасыщенные жирные кислоты, которые в результате реакций полимеризации, циклизации, конденсации дают начало составляющей "протокерогена" с наименьшей долей изотопа [c.63]

    Оценка различных эмульгаторов показала, что нефтерастворимые реагенты (окисленные керосин, парафин и петролатум, нафтенат алюминия и др.) не эффективны для получения эмульсионных буровых растворор. Лишь кратковременную устойчивость обеспечивают и некоторые гидрофильные эмульгаторы (мыла эфирокислот, белковый клей). Для практического использования лучшими эмульгаторами оказались щелочные мыла и нафтеновые сульфокислоты (нефтяные контакты и детергенты), причем нейтрализованные контакты не имеют преимуществ, а иногда даже уступают кислым. В эмульсионных буровых растворах наибольший эффект дают кальциевый и натриевый детергенты (ДС, ДС-РАС) и газойлевый контакт. В зависимости от рода и количества эмульгатора меняется дисперсность эмульсии, что видно по интегральным кривым распределения глобул по размерам и суммарной поверхности в 6 %-ной суспензии аскангеля, содержащей 10%. нефти [47]. Сравнение оптимальных дозировок газойлевого контакта (0,2% ГК), НЧК (0,3%), УЩР (10%) и КМЦ (1%) показывает, что наибольшее диспергирование дает газойлевый контакт. Несколько грубее эмульсия, стабилизированная УЩР или КМЦ. Фракции с диаметром глобул менее 50 мк составляют 75—80% от общего их числа. Наиболее грубодиснерсные эмульсии дает НЧК, когда лишь 50% глобул имеют диаметр до 50 мк. Соответственно меняется и суммарная поверхность. При обработке газойлевым контактом поверхность глобул размером до 100 мк составляет 80% всей поверхности эмульгированной нефти, при обработке УЩР и КМЦ — 50% и при обработке НЧК всего 20%. Еще большая дисперсность достигается с помощью реагентов на основе ненасыщенных жирных кислот, их водорастворимых мыл, а также смазочных добавок. [c.207]

    Для инвертных эмульсий используют олеофильные эмульгаторы — различные нефтехимические продукты, например окисленный парафин, нефтяные контакты, а также ионогенные ПАВ, эфиры многоатомных спиртов и ненасыщенных жирных кислот и ряд других продуктов, число которых непрерывно растет. Как пра вило, одним каким-либо реагентом не удается обеспечить стабилизацию нефтяных и инвертных растворов. Многофункциональность действия обеспечивает применение нескольких, взаимодополняющих эмульгаторов. В рецептурах инвертных эмульсий стабилизаторами являются асфаш.то-смо-листые вещества битумов, а также высокодисперсная твердая фаза, в частности аминированные бентониты и добавки сажи, графита, извести. Для повышения тиксотропии и устойчивости инвертных эмульсий и нефтяных растворов, особенно при нагревании, используются различные мыла, вещества гидрофобизирующие и ингибирующие твердую фазу и препятствующие обращению эмульсий. Для этих цедей [c.208]

    Многочисленными патентами в качестве стабилизаторов инвертных эмульсий предлагаются оксамиды — смеси различных окса-минов и олеиновой кислоты эмульгаторы гетероциклического строения — производные оксазола различные амиды, четвертичные аммониевые соли ненасыщенных жирных кислот, их амиды, например гексилглюкаминамид лауриновой кислоты, а также полиамиды олигомерного характера, фосфолипиды типа лецитина, поливалентные соли кислот таллового масла, смеси их с различными аминами и аминоамидами, смесь окисленного таллового масла и четвертичных аммониевых солей, неполные эфиры многоатомных спиртов и высших карбоновых кислот, например ангидросорбитмоноолеат. [c.384]


Смотреть страницы где упоминается термин Окисление жирных кислот ненасыщенных: [c.102]    [c.560]    [c.567]    [c.400]    [c.82]    [c.25]    [c.88]    [c.182]    [c.385]   
Биохимия Издание 2 (1962) -- [ c.316 ]




ПОИСК





Смотрите так же термины и статьи:

Окисление ненасыщенных кислот



© 2025 chem21.info Реклама на сайте