Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глубокая очистки СС1, методом ректификации

    Специальная подготовка сырья для установок каталитического крекинга является исключительно важной. Наиболее дешевым и распространенным способом такой подготовки является тщательная перегонка нефти при получении дистиллятов, предназначенных для переработки в процессе каталитического крекинга. Нельзя ограничиваться однократным испарением, а необходимо использовать методы современной ректификации. Однако даже квалифицированные методы ректификации не могут обеспечить получение качественного сырья, особенно из нефтей с повышенным содержанием азотистых соединений, смолистых веществ и металлов. Часто для повышения экономичности процесса каталитического крекинга приходится применять различные физические и химические методы облагораживания сырья. Из них наиболее универсальным способом является гидрогенизационная очистка она пригодна и для очистки сырья, и для облагораживания циркулирующего газойля. Этот метод позволяет глубоко очищать от вредных компонентов любые, даже наиболее неквалифицированные виды сырья. К сожалению, гидроочистка является относительно дорогостоящим методом, поскольку требуется значительное количество дефицитного водорода. Тем не менее его применение для очистки некачественных видов сырья каталитического крекинга экономически вполне приемлемо. При подготовке сырья, содержащего немного нежелательных компонентов, можно наряду с гидроочисткой применять описанные выше другие, более дешевые методы очистки. [c.211]


    В книге рассмотрены вопросы производства инертных газов при комплексном разделении воздуха, природных и продувочных газов методами низкотемпературной ректификации н адсорбции. Описаны схемы установок и способы получения аргона, криптона, ксенона, неона и гелия, а также химические и физические методы глубокой очистки этих газов от примесей. Даны основы расчета аппаратов и установок для производства всех инертных газов. [c.183]

    Глубокая очистка вещества потребовала усовершенствования известных методов разделения смесей, а также разработки новых методов. Так, например, именно для глубокой очистки вначале металлов, а затем и других веществ в 50-х годах был разработан метод зонной перекристаллизации (зонной плавки), который и в настоящее время широко применяется и в лабораториях, и в промышленности. Совсем недавно предложен метод термодистилляции, позволяющий производить эффективную очистку жидкостей от находящихся в них примесей в виде взвешенных частиц. Развит метод ректификации в режиме [c.9]

    В связи с необходимостью получения в промышленном масштабе особо чистых веществ большое значение приобретают также исследования кинетики процесса в условиях микроконцентраций компонента в растворе. Исследования по массообмену в большинстве случаев ограничивались областью средних концентраций, а массопередача микроконцентраций в условиях глубокой очистки методом ректификации изучена недостаточно. [c.31]

    Дистилляционные методы, включающие в себя различные варианты простой перегонки, ректификации и молекулярной дистилляции, с успехом используются при получении веществ особой чистоты. Проблема глубокой очистки веществ потребовала усовершенствования этих методов. Так, здесь особенно наглядно проявляется настоятельная задача выбора конструкционного материала для аппаратуры, который не загрязнял бы очищаемое вещество. Поиск же оптимальных условий осуществления дистилляционных методов применительно к глубокой очистке веществ непосредственно связан с разработкой вопросов теории процесса дистилляции разбавленных растворов. [c.32]

    Одной из причин трудности глубокой очистки веществ является специфическая проблема стенки . Именно ею обусловлено несоответствие между рассчитываемыми и практически достигаемым степенями очистки. В аппаратуре, используемой для глубокой очистки методом ректификации, недопустимы всевозможные карманы, неплотности, непроточные полости, так как их действие аналогично ложной течи при создании глубокого вакуума. В целом аппаратура должна иметь минимальное паразитное сопротивление и минимальную паразитную емкость. Для удобства эксплуатации желательно также, чтобы колонна имела наименьшую динамическую задержку на теоретическую ступень с ту пень сек), т. е. обладала бы небольшой инерционностью. [c.79]


    Содержание взвешенных нерастворимых частиц можно существенно снизить также путем медленного испарения жидкой фазы целевого продукта без кипения. Глубокая очистка кислорода перед подачей в колонну низкотемпературной ректификации начинается с очистки воздуха от влаги, диоксида углерода и ацетилена методом адсорбции. Обычно этот процесс проводят комплексно, т. е. одновременно извлекают из потока газа влагу и диоксид углерода на цеолитах. Из промыш.ленных цеолитов рекомендуется цеолит марки КаХ, емкость которого по диоксиду углерода при очистке влажного воздуха равна 2,3-3,5%, а динамическая активность по парам воды составляет 2,5-5,5% от массы сорбента при давлении от 2,5 до 20 МПа. Ацетилен и другие углеводороды адсорбируются почти полностью и не оказывают влияния на очистку воздуха от диоксида углерода. [c.913]

    Излагаются теоретические аспекты используемых в настоящее время основных методов глубокой очистки веществ. Большое внимание уделяется широко распространенным дистилляционным и кристаллизационным методам. Во втором издании (1-е— в 1974 г.) добавлены новые разделы, посвященные расчету относительной летучести примесей, периодической ректификации, загрязняющему действию материала аппаратуры при кристаллизационной очистке веществ, глубокой очистке от взвешенных частиц. [c.2]

    Во втором издании шире представлены химические методы глубокой очистки. Добавлены новые разделы, посвященные расчету коэффициента разделения при фазовом равновесии жидкость— пар и твердое тело — жидкость, периодической ректификации с постоянным и дискретным отбором продукта. Больше внимания уделено вопросам многократной перегонки и многократной перекристаллизации, загрязняющему действию материала аппаратуры при кристаллизационной очистке веществ, глубокой очистке от взвешенных частиц. Соответственно сокращены некоторые из рассмотренных в первом издании разделов произведены необходимые исправления. При этом общий план построения книги сохранен прежним основное внимание в ней, как и ранее, уделено дистилляционным и кристаллизационным методам глубокой очистки. [c.3]

    Так как для процесса глубокой очистки веществ справедливы соотношения ji<1, г/ С1, р у—л р)< 1 и, кроме того, есть смысл рассматривать задачу только для случая v z L)< (в противном случае глубокая очистка веществ методом ректификации становится нецелесообразной), то, пренебрегая этими величинами по сравнению с единицей в уравнениях (11.97) и (11.98), имеем, с учетом соотношений (11.59) и (П.4), [c.76]

    Среди кислородсодержащих соединений лишь ацетальдегид образует азеотропные смеси с углеводородами С4, остальные могут быть отделены от последних обычной ректификацией. Однако вследствие отклонения от закона Рауля коэффициенты относительной летучести бутана и бутадиена по отнощению к ацетону и ацетонитрилу являются низкими и для глубокой очистки бутана и бутадиена требуется энергоемкая четкая ректификация. В то же время коэффициенты относительной летучести кислородсодержащих углеводородов по отношению к углеводородам С4 в присутствии полярных растворителей достаточно велики, и это позволяет отделять их вместе с ацетиленовыми соединениями методом экстрактивной ректификации. Выделение концентрированного фурана затрудняется присутствием в катализате углеводородов С5, имеющих близкие с фураном температуры кипения (изопрен 34,1 С, фуран 31,2 °С, пиперилены 42—44,1 °С). Поэтому для выделения фурана используется метод экстрактивной ректификации, хотя и не очень эффективный Б данном случае. [c.168]

    Вещества особой чистоты получают или глубокой очисткой образцов, полученных обычными методами, или выделением особо чистого вещества из другого, более сложного, особой чистоты, или, наконец, путем синтеза сложного особо чистого вещества из простых особо чистых веществ. Во всех случаях необходима глубокая очистка веществ. Для этого используются химические и особенно физико-химические методы дистилляция и ректификация экстракция различными растворителями сорбционные методы (хроматография, ионный обмен на колонках и пр.) кристаллизационные методы (направленная кристаллизация, зонная плавка и др.) электролиз (см., например, рафинирование меди в гл. УИ1, 7) вакуумная дуговая и электронно-лучевая плавка, широко используемая в промышленности для получения чистых циркония, тантала, ниобия, вольфрама и других металлов другие методы. [c.258]

    Глубокая очистка ССЦ методом ректификации  [c.287]

    В монографии рассмотрены теоретические основы ряда используемых в настоящее время химических и физико-химических методов глубокой очистки веществ. При этом уделяется большое внимание одному из наиболее эффективных методов очистки — методу ректификации, в развитие которого самими авторами внесен значительный вклад. Достаточно подробно изложена разработанная авторами теория другого метода глуб0К011 очистки веществ — метода противоточной кристаллизации из расплава. [c.2]


    Таким образом процесс глубокой очистки методом ректификации не зависит от скорости проведения процесса (и. в частности, от скорости отбора) и следует учитывать лишь гетерогенное равновесие жидкость — иар. Это предположение требует лополнительпого экспериментального подтпержленип. [c.238]

    Физико-химические свойства 5ЬС1з благоприятствуют эффективной глубокой очистке методом ректификации. Исследования по очистке трихлорида сурьмы ректификацией [27—29] показали, что примеси Си, Ре, РЬ, N1, Со, Мп, М , А1 концентрируются в кубовом остатке, а Аз, 5п, 5е и частично 5 обогащают головные фракции. После двухкратной ректификации в кварцевой колонне с 15—25 тарелками, имеющими ситчатую или щелевую перфорацию, трихлорид сурьмы содержит 10 —10 % примесей и менее. [c.315]

    При глубокой очистке веществ ректификацией наличие загрязняюшего действия аппаратуры сказывается в различной степени в зависимости от ряда факторов, связанных со структурой парожидкостного потока и режима работы колонны. Нами предложен аналитический метод расчёта эффективности ректификационной очистки с учётом загрязняющего действия в условиях продольного перемешивания жидкой фазы. Приведено уравнение, описывающее, распределение примеси по высоте ректификационной колонны с учётом продольного перемешивания и отбора очищенного продукта. Его анализ позволяет рассчитать концентрацию примеси в очищенном продукте и степень очистки вещества, а также проследить их изменение при влиянии ряда факторов. Рнс. 2, библ. 6 назв. [c.229]

    Наиболее легко разрешимой в силу существенного различия свойств является задача тонкой очистки бензола от сероуглерода. Для этой цели пригодны, например, методы химической очистки— растворами спиртовой щелочи [1], диметиламином, днэтиламином, пиперидином в сочетании с водной щелочью [2, 3], а также адсорбционной очистки [4]. Несмотря на относительную простоту упомянутых методов и надежно обеспечиваемую ими требуемую глубину очистки, они не нашли промышленного применения в коксохимической промышленности. Причина состояла в том, что эту же задачу оказалось возможным решить методом ректификации без введения дополнительных стадий очистки [5, 6]. При отборе головной фракции сырого бензола на колоннах эффективностью 40—45 тарелок получается бензол с содержанием сероуглерода не более 0,0001% [7]. Естественно, ректификация получила исключительное распространение для удаления сероуглерода, поскольку одновременно сырой бензол очищался от циклопентадиена и основной массы примесей насыщенного характера. Еще более глубокая очистка бензола от сероуглерода, в случае необходимости, может быть обеспечена некоторым повышением эффективности колонны для удаления сероуглерода (сероуглеродной) или повторной ректификацией бензола с отбором головной фракции после его очистки от тиофена. [c.211]

    В рафинате среднетемпературной гидррочистки содержится много насыщенных соединений, которые при ректификации сосредоточиваются в головной и промежуточной (бензол—толуольной) фракциях. Для выделения бензола даже с температурой кристаллизации 5,30—5,35 °С требуется достаточно четкая ректификация. Обычно для выделения головной фракции и бензола устанавливаются ректификационные колонны с 55—65 тарелками и отбор продуктов ведут при высоких рефлюксных числах [59]. Однако в получаемом бензоле для синтеза все-таки содержится довольно много насыщенных углеводородов, в том числе н-гептана и метилциклогексана, что видно из табл. 39. Более глубокая очистка бензола от примесей насыщенных углеводородов достигается специальными методами экстрактивной ректификации. [c.228]

    Препаративная хроматография развивается в основном как тонкий лабораторный метод выделения индивидуальных соединений из смесей, например из продуктов синтеза, и как метод последующей глубокой очистки. Однако в последние годы наблюдается тенденция развития препаративной хроматографии как метода получения веществ высокой чистоты в промышленном масштабе. Ее целесообразно применять в тех многочисленных случаях, когда выделение и очистка более распространенными способами — кристаллизацией, ректификацией и др. — не эффективны. Значение препаративной хроматографии с каждым годом растет в связи с бурным развитием химии чистых и особо чистых материалов. Препаративная хроматография позволяет получить в товарных количествах высокочистые газы из природных газовых смесей или производственных продуктов, разделять азеотропные смеси, не поддающиеся разделению ректификацией, получить реактивы высокой чистоты в качестве эталонов. [c.213]

    После выхода первого издания учебного пособия Глубокая очистка веществ (1974 г.) исследования в области получения высокочистых веществ ознаменовались новыми успехами. С середины 70-х годов проблема высокочистых веществ оказалась связанной с развитием волоконной оптики, для которой потребовались новые материалы с низким содержанием примесей. Возросли требования и к чистоте веществ, используемых в микроэлектронике и полупроводниковой технике. В соответствии с этим актуальной стала проблема максимальной очистки веществ от примесей, в виде взвешенных частиц субмикронного размера. Для решения этой задачи был разработан новый метод очистки — пленочная ректификация с воздействием на пар температурного градиента (термодистилляция). Большое значение придается подбору малозагрязняющих конструкционных материалов и созданию технологических комплексов, которые исключали бы контакты очищаемого вещества с исходным сырьем. В эту цепочку включают методы аналитического контроля. [c.3]

    Так как конечной целью (ректификации является получение продукта заданного состава, то при глубокой очистке веществ этим методом весьма важной задачей является рассмотрение вопроса о возможном загрязнении очищаемого вещества материалом аппаратуры. Эффект загрязнения при этом может быть обусловлен вымыванием нежелательной примеси из материала аппаратуры, а также химической реакцией материала аппаратуры с очищаемым веществом или какой-либо апрессивной, но легко отделяемой примесью, содержащейся в очищаемом веществе. К этим случаям, очевидно, можно отнести и проникновение примеси из окружающей среды через стенки разделительного аппарата — колонны — и самопроизвольное диспергирование конструкционных материалов при их контакте с очищаемым веществом в ходе процесса. [c.75]

    В последнее время в практике глубокой очистки веществ успешно применяют комбинированный способ, получивший название метода термодистилляции. В этом методе термодиффузия осуществляется в сочетании с ректификацией в колонном аппарате типа коаксиальных цилиндров. Процесс разделения в такой термодистилляционной колонне протекает в условиях сосуществования движущихся противотоком жидкости и пара. При этом на пар налагается температурное поле, подобно тому, как это реализуется в рассмотренной выше термодиффузионной колонне для разделения смеси газов. Роль холодной стенки играет поверхность внутренней трубки (цилиндра), температура которой Т путем циркуляции хладоагента поддерживается равной температуре конденсации пара или несколько ниже. В ходе процесса по этой стенке движется в виде тонкой пленки жидкость, образук щаяся в конденсаторе колонны. Температура Т] подбирается таким образом, чтобы на холодной стенке не происходило дополнительной конденсации пара, контактирующего с жидкостью. Горячей стенкой является поверхность внешней трубки, которая обогревается до заданной температуры Гг. В результате общий эффект разделения в колонне будет обусловлен как явлением термодиффузии в паре, так и ректификацией вследствие массообмена между стекающей по холодной стенке жидкостью и поднимающимся в зазоре между трубками потоком пара. [c.181]

    Для глубокой очистки чаще всего используют методы экстракции и ректификации. В отдельных случаях применяют химические, сорбционные и кристаллофизические методы. Очистка Ge U затруднена его очень большой реакционной способностью, особенно в сочетании с хлором и хлористым водородом. Такие обычные материалы аппаратуры, как кварц, стекло, эмаль, загрязняют тетрахлорид кремнием (в виде соединений с хлором и кислородом, силоксанов и т. п.), мышьяком и [c.193]

    Получение. Необходимым условием достижения высоких электрофиз. характеристик П. м. является их глубокая очистка от посторонних прнмесей. В случае Ge и Si эта проблема решается путем синтеза их летучих соед. (хлоридов, гидридов) и последующей глубокой очистки этих соед. с применением методов ректификации, сорбции, частичного гидролиза и спец. термич. обработок. Хлориды особой чистоты подвергают затем высокотемпературному восстановлению водородо.м, прошедшим предварит, глубокую очистку, с осаждением восстановленных продуктов на кремниевых или германиевых прутках. Из очищенных гидридов Ge и Si выделяют путем термич. разложения. В результате получают Ge и Si с суммарным содержанием остаточных электрически активных примесей на уровне 10 -10 %. Получение особо чистых полупроводниковых соед. осуществляют синтезом из элементов, прошедших глубокую очистку. Суммарное содержание остаточных примесей в исходных материалах не превышает обычно 10 " -10 %. Синтез разлагающихся соед. проводят либо в запаянных кварцевых ампулах при контролируемом давлении паров летучего компонента в рабочем объеме, либо под слоем жидкого флюса (напр., особо чистого обезвоженного В2О3). Синтез соед., имеющих большое давление паров летучего компонента над расплавом, осуществляют в камерах высокого давления. Часто процесс синтеза сонме- [c.59]

    Глубокую очистку С. в осн. осуществляют дистилляцией и ректификацией. Для дальнейшей очнстки С. от примесей (Н, С, О, Se, As и др.) перспективны кристаллизац. методы, среди них-способ противоточной кристаллизации нз расплава. Получена высокочистая С. с содержанием примесей 10 -10 % по массе. [c.321]

    Исходные технические продукты, используемые длп глубокой очистки их методом ректификации, с точки зрения обычной химической технологии являются достаточно чистыми. Концентрация примесей в них пе превышает, как правило, 10 —Ю %. Такое содержание определяется как налой растпоримостью Б очищаемых продуктах многих неорганических соединений [86, 87], так и тем, что нередко проводится п])едпарителыгая г )у-бая очистка с использопанием достаточно эффективных процессов. [c.252]

Рис. 4 ). Пример графического расчета числа теоретических ступеней при глубокой очистке веществ методом акстрвктиБНой ректификации Рис. 4 ). Пример <a href="/info/1441965">графического расчета числа теоретических ступеней</a> при <a href="/info/365636">глубокой очистке веществ методом</a> акстрвктиБНой ректификации
    Использование ректификации как типового метода для глубокой очистки вен еств обеспечивает получение продуктов, f[ o6xo-димых для различных областей новой техники. Здесь приводятся [c.282]

    Рациональное многократное использование воды во всех технологических процессах и операциях, создание локальных замкнутых систем технического водоснабжения. Особое значение приобретает рациональное использование воды в наиболее водоемких технологических процессах, например при промывке сырья, полупродуктов, готового продукта, и разработка физико-химических способов очистки сточной воды, обеспечивающих возврат очищенной воды в эти же процессы. В этом случае не требуется глубокой очистки сточных вод из нпх достаточно удалить те компоненты, которые оказывают отрицательное влияние на качество промываемого продукта. Например, разработанная во ВНИИ ПАВ и ВНИИ ВОДГЕО рациональная система использова-нпя воды в производстве синтетических жирных кислот обеспечивает получение сточных вод с содержанием кислот 180—200 г/л. Очистка этих вод методом азеотроппой ректификации позволяет, с одной стороны, выделить и получить в товарном виде низкомолекулярные жирные кислоты (муравьиную, уксусную, проиионовую и масляную), а с другой— использовать очищенную воду в производстве. На заводе синтетических жирных кислот создана замкнутая система технического водоснабжения по кислым сточным водам, позволяющая увеличить на 12 % [c.303]

    Как правило, наиболеа эффективной и глубокой очистки удается достигнуть, применяя последовательно разнообразные способы очистки. Поскольку при ректификации используются преимущественно легколетучие и легкоплавкие продукты, особенно успешно ее сочетание с кристаллофизическими (зонной плавкой, вытягиванием монокристалла) и адсорбционными (жидкостной и паро-газовой хроматографией) методами очистки. Иногда очень эффективными оказываются хишические методы очистки. При зтом существенно, что адсорбционные и химические методы очистки во многих случаях [c.67]


Библиография для Глубокая очистки СС1, методом ректификации: [c.184]    [c.78]   
Смотреть страницы где упоминается термин Глубокая очистки СС1, методом ректификации: [c.24]    [c.99]    [c.103]    [c.14]    [c.419]    [c.509]    [c.10]    [c.13]    [c.230]    [c.234]    [c.261]    [c.266]    [c.286]    [c.288]    [c.288]   
Смотреть главы в:

Методы получения особо чистых неорганических веществ -> Глубокая очистки СС1, методом ректификации




ПОИСК





Смотрите так же термины и статьи:

Метод очистки

Методы ректификации



© 2025 chem21.info Реклама на сайте