Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Условия измерения оптической плотности

    Точность определения концентрации зависит от длины волны, на которой производится это определение. Выше, при рассмотрении инструментальных причин отклонения от закона Беера указывалось, что ошибка измерений оптической плотности минимальна в области максимума или минимума кривой поглощения. Дополнительное условие налагается в случае исследования растворов, содержащих два или больше веществ, так как точность, с которой могут быть найдены концентрации, также определяются выбором длин волн. Из уравнения (X. 120) следует, что относительная ошибка ДС1/С1 определения концентрации компонента I минимальна, если разность отношения молярных коэффициентов поглощения веществ I и И  [c.652]


    Вопрос о наложении светопоглощения окрашенного реактива на полосу поглощения комплекса рассматривался ранее (см. гл. 4, 5). Большинство окрашенных реактивов имеет также рН-индика-торные свойства, причем окраска свободного аниона часто близка к окраске его комплексов с металлами, и возможность ошибок еще более возрастает, если оптимальное pH образования комплекса близко к р Синд- Однако даже в самых благоприятных случаях окраска избытка реактива накладывается на окраску комплекса. Поэтому особое значение приобретают условия измерения оптической плотности. [c.135]

    Условия измерения оптической плотности [c.135]

    В тех же условиях готовят 6—7 эталонных растворов с содержанием в них марганца в указанных пределах. Измерение оптической плотности растворов производят на любом фотоэлектроколориметре, используя светофильтр с X 455 нм и кювету с толщиной слоя 0,3—0,5 см, в том порядке, который указан на стр. 65, 71, начиная с выбора оптимального раствора сравнения. [c.172]

    В фотометрическом анализе имеется много источников колебаний фона. Довольно велики колебания фона при различных условиях измерения оптической плотности. Так, работы многих исследователей показывают, что при ><0,05 или даже при 1)<0,1 рез- [c.221]

    Оптическую плотность раствора измеряют на фотоколориметре в условиях, аналогичных условиям измерения оптической плотности стандартных растворов. По полученной оптической плотности анализируемого раствора по калибровочному графику находят концентрацию железа в мг/мл. [c.207]

    Для определения железа в испытуемом "растворе берут из общего объема 100 мл аликвотиую часть 10—20 мл раствора, помещают в мерную колбу емкостью 50 мл, прибавляют по 5 мл растворов сульфосалициловой кислоты, аммиака и объем раствора доводят водой до метки. Измерение оптической плотности "раствора см. в условиях приготовления эталонных растворов. Содержание железа находят по градуировочному графику. [c.154]

    В связи с невысокой прочностью и ступенчатым комплексооб-разованием фторидных комплексов не наблюдается прямой пропорциональности между общей концентрацией и оптической плотностью раствора. Поэтому фотометрическое определение фторида требует особых условий измерения оптической плотности. Наиболее пригоден для этого метод фотометрического титрования, при котором отклонение от закона Бера не имеет значения. Метод шкалы мало удобен. В случае применения циркониевых, ториевых и других лаков , когда окрашен не только комплекс, но и реагент, метод шкалы дает более удовлетворительные результаты. Шкалу необходимо готовить в день определения. [c.289]

    Концентрацию гидроперекисей выбирали так, чтобы исключить возможность самоассоциации молекул, а использованные толщины слоев обеспечивали оптимальные условия измерения оптической плотности, ширины полос и их разрешения [6]. Все приводимые в настоящей работе результаты измерения полуширины полос даны для контуров в оптической плотности. [c.110]


    Метод пропускания. Уравнение (16) показывает, что при 1 соответствующих условиях измерения оптическая плотность  [c.698]

    Переводят в мерную колбу емкостью 50 мл. Берут из каждой колбы две порции по 20 мл, переносят в другие мерные колбы емкостью 50 мл, добавляют 5 мл аммиака и доводят объем раствора водой до метки. Измерение оптической плотности растворов см. в условиях приготовления эталонных растворов. Результаты определений (не менее четырех) обрабатывают, пользуясь методом математической статистики. [c.155]

    При теоретическом прогнозировании определяемого минимума необходимо учитывать также воспроизводимость результатов, влияние фона и погрешности измерения оптических плотностей, поэтому в уравнения (4.9) и (4.10) необходимо вводить соответствующие поправки, позволяющие объективно оценить значение Для учета влияния фона и погрешностей измерения А. Б. Бланк на основе метрологического обоснования предложил принять Лмин = 5-5д (где —стандартное отклонение. соответствующее оптической плотности Лмин). Тогда полученные при этом условии выражения определяемого минимума примут такой вид  [c.186]

    Для приготовления эталонных растворов вначале соблюдают условия, указанные на стр. 169, кончая операцией разрушения избытка перекиси водорода, добавляют в каждую колбу после охлаждения растворов 6 мл серной кислоты, 2 мл фосфорной кислоты и 0,3 г перйодата калия. Растворы нагревают до кипения и выдерживают при температуре, близкой к кипению, 5 мин, затем, охладив, переносят их в мерные колбы емкостью 50 мл и доводят объем раствора дэ метки. Строят градуировочный график по измерениям оптической плотности эталонных растворов на фотоэлектроколориметрах различных марок при Я 530—550 нм в качестве раствора сравнения берут воду. [c.170]

    Количественный анализ методом ИК-спектроскопии выполняется прямым или косвенным сравнением оптической плотности неизвестного вещества при данной длине волны (часто в максимуме интенсивной полосы поглощения) с оптической плотностью того же вещества известной стандартной концентрации. Для расчетов наиболее полезным параметром является оптическая плотность в максимуме, так как она легко измеряется и прямо связана с концентрацией. Необходимо избегать измерений оптической плотности на краях полос, так как даже очень маленькие ошибки в воспроизводимости длин волн приводят к большим изменениям поглощения. Для анализа можно использовать любую полосу (сильную или слабую) при условии, что концентрация раствора и толщина кюветы выбраны таким образом, что оптическая плотность попадает в оптимальный интервал. Целесообразно выбирать полосы, минимально перекрывающиеся с другими полосами в спектре. [c.236]

    От каких экспериментальных условий зависит точность измерения оптической плотности мутных растворов  [c.188]

    Метод определения рения а-фурилдиоксимом отличается большой чувствительностью и избирательностью. Молибден, вольфрам и ванадий, обычно сопутствующие рению в природных соединениях и сплавах, в соответствующих условиях не мешают определению малых количеств рения а-фурилдиоксимом. Соединение рения с а-фурилдиоксимом, полученное в присутствии хлорида олова (И) и ацетона (24— 26 об. %), при кислотности 0,6—1,0 и. НС поглощает при Хтах 530 нм е = 4,3 10". Раствор реагента в ацетоне поглощает в УФ-об-ласти спектра (220—330 пм) и не мешает измерению оптической плотности комплексного соединения рения. [c.196]

    Для введения поправок на поглощение реагента готовят серию растворов, содержащих реагент в тех же количествах и условиях, как была приготовлена изомолярная серия растворов, не содержащих меди. Из приготовленной изомолярной серии растворов выбирают средний (4-й или 5-й) и снимают его спектр поглощения относительно раствора, содержащего одни реагент концентрации, соответствующей выбранному раствору. Выбирают длину волны, при которой наблюдается максимальное поглощение и проводят измерение оптической плотности каждого из растворов приготовленной серии по отношению к раствору, содержащему соответствующее количество реагента. [c.120]

    Метод определения условной удельной поверхности основан па измерении оптической плотности сажевой суспензии, приготовленной в специальных стандартных условиях. Для подсчета величины удельной поверхности применяются эмпирические формулы, отображающие математическую зависимость между оптической плотностью сажевых суспензий и средним радиусом сажевых частичек. [c.220]

    При измерении квантовых выходов флуоресценции относительно стандартного вещества возможны ошибки за счет эффектов внутреннего фильтра (реабсорбция), немонохроматичности возбуждающего света, флуоресценции кювет, тушения кислородом и фоторазложения. Ошибку, обусловленную первым фактором, легко устранить, используя достаточно разбавленные растворы. Для предотвращения немонохроматичности следует проверять чистоту возбуждающего света. Во избежание ошибки при измерении оптической плотности следует по возможности измерять оптическую плотность раствора пучком света того же спектрального состава, что и при возбуждении флуоресценции. Необходимо проводить дополнительные измерения для учета флуоресценции растворителя, стенок кюветы. Для этого при исследовании растворов необходимо измерить в тех же условиях спектр флуоресценции растворителя. Спектр, полученный при измерении флуоресценции растворителя, вычитается из спектра, полученного при измерении раствора, до его исправления. [c.160]


    Для определения титана в бериллии берут две навески металла rio 1 г, переносят каждую в коническую колбу нли стакан емкостью 50— 100 мл, растворяют в 10 мл серной кислоты (1 1) при слабом подогревании. После получения прозрачного раствора переводят его в мерную колбу емкостью 100 мл и доводят объем раствора водой до метки. В делительную воронку емкостью 60—70 мл берут аликвотную часть 20 мл, прибавляют 4 мл тайрона, 4 мл трибутиламина, 5 мл сульфата гидразина и устанавливают pH раствора 4,5—5,0 добавлением 1 н. раствора едкого натра. После этого приливают 10 мл хлороформа н экстрагируют соединение титана, производят перемешивание в течение 3 мин. Измерение оптической плотности проводят в условиях см. приготовление эталонных растворов (стр. 219). Содержание титана находят по градуировочному графику. Результаты (не менее четырех) определений обрабатывают методом математической статистики. [c.220]

    Для определения марганца в стали берут две навески по 0,25 г, растворяют каждую в 25 мл смеси кислот в конической колбе емкостью 100 мл, нагревают раствор до прекращения выделения окислов азота, охлаждают и переносят в мерную колбу емкостью 50 мл. Отбирают из обеих колб 2 порции по 20 мл, переносят в конические колбы емкостью 50—60 мл и приливают к каждой порции 6 мл серной кислоты и 2 мл фосфорной кислоты, 0,3 г перйодата калия. Производят окисление и измерение оптической плотности в условиях, указанных для приготовления эталонных растворов с применением перйодата калия. Результаты параллельных определений (не менее четырех) обрабатывают, пользуясь методом математической статистики. [c.170]

    Для измерения оптической плотности испытуемый и эталонный растворы должны находиться в одинаковых условиях. ( , одинаковая величина pH и т. п.). [c.287]

    Для приготовления эталонных растворов в шесть конических колб емкостью 100 мл вводят в каждую 30 мл воды и стандартный раствор, содержаш,ий марганец в количестве (мг) 2,0 4,0 6,0 8,0 10,0 12,0 соответственно. Окисление марганца (II) проводят в условиях, указанных при окислении перйодатом в качестве окислителя (см. стр. 170), увеличив количество перйодата калия до 0,6 г. После получения окрашенных растворов их охлаждают, переносят в мерные колбы емкостью 100 мл и доводят объем раствора водой до метки. Измерение оптических плотностей этих растворов производят на любом фотоэлектроколориметре при Л 525 нм, I = 0,5 см в том порядке, который указан на стр. 65, 71, начиная с выбора оптимального раствора сравнения. По полученным данным строят градуировочный график. [c.171]

    Главным преимуществом фотоэлектрических методов является облегчение условий работы аналитика в связи с устранением утомляемости глаза. Особое значение это обстоятельство имеет при массовых анализах, для чего фотометрические методы нашли широкое применение. Кроме того, применение фотоэлементов дает возможность автоматизировать контроль производства. Наконец, большим преимуществом фотоэлектрических методов является возможность измерения оптической плотности растворов в ультрафиолетовой и инфракрасной областях спектра, что значительно расширило область применения фотометрического анализа. [c.328]

    Измерение оптической плотности эталонных растворов проводят в условиях см. стр. 196. [c.197]

    Очевидно, что это выражение есть условие минимальной ошибки в измерении оптической плотности. Обычно фотометрические измерения проводят в интервале значений оптической плотности 0,1 —1.0. Измерение низких значений А (по рядка нескольких сотых) так же, как и высоких А > 1,0), сопряжено со значительными ошибками в силу несоизмеримости пропущенного и поглощенного световых потоков. Кроме того, при высоких оптических плотностях часто зависимость Л от С (концентрации окрашенного компонента) теряет линейный характер. [c.135]

    Для определения ионов Ре + в анализируемом растворе из мерной колбы, содержащем раствор трисульфосалицилата железа (раствор 1), отбирают пипеткой 25 мл и переносят в мерную колбу вместимостью 50 мл, доливают до метки дистиллированную воду и тщательно перемешивают. Измеряют оптическую плотность в условиях, указанных при построении градуировочного графика (Я = 400 нм, / = 30 мм). Пользуясь графиком зависимости A = f( Fe +, мг) по измеренной оптической плотности находят содержание ионов Ре + в анализируемой смеси. [c.232]

    Для определения железа в испытуемом растворе берут Ио общего объема 100 мл аликвотную часть 10—20 мл этого раствора, помещают в коническую колбу емкостью 50 мл, прибавляют 1 мл азотной кислоты, осторожно нагревают раствор в течение 1—2 мин, охлаждают его и переводят в мерную колбу емкостью 50 мл. Добавляют в эту колбу 1 мл серной кислоты, 5 мл сульфосалициловой кислоты и доводят объем раствора водой до метки. Измерение оптической плотности раствора см. в условиях приготовления эталонных растворов. По градуировочному графику находят содержание железа. [c.154]

    Эйб и Янагисава [36] изучали изменение кристалличности полипропилена по соотношению экстинкций полос поглощения ооо 976 и величину этого соотношения предложили оценивать как степень кристалличности. Одновременно они приводят иное соотношение )7о )15э, которое также может служить для измерения степени кристалличности. В последнем случае, однако, довольно трудно четко различить интенсивность названных полос. Полосы поглощения 976 или 1153 см интенсивность которых зависит только от толщины образца (или от произведения толщины на плотность [37]), используются в качестве внутреннего стандарта, благодаря чему нет необходимости определять толщину образца. Метод применим при условии, что оптическая плотность образца, отнесенная к единице толщины, прямо пропорциональна степени кристалличности. Гейне [38] определил степень кристалличности по соотношению экстинкций полос поглощения Ема Eim и установил линег ную зависимость мел<ду соотношением экстинкций EmQ-.Ewri и удельным объемом. [c.71]

    Вычислить концентрации (моль/л) моно- и диэтиламина в техническом триэтиламине, если измеренные при тех же условиях значения оптической плотности при I = 1,0 см равны = = 0,525, 728 = 0,715. [c.186]

    При оптимальных условиях измерения оптической плотности, обеспечивающих получение максимальной точности, систематическая ошибка из-за инерции приемно-регистрирующей системы должна быть в 4 раза меньше ошибки, обусловленной аппаратной функцией причем случайная ошибка должна быть в 1,25 раза меньше общей систематической ошибки [2,3]. Эти соотношения не зависят ни от свойств прибора, ни от исследуемого спектра они являются следствием того, что в выражения для систематических и случайных ошибок ширина щелей прибора и постоянная времени регистрирующей системы входят в соответствующих степенях. Скорость сканирования спектра постоянная времени приемнорегистрирующей системы т и оптимальная спектральная полуширина щелей АХопт связаны зависимостью [c.214]

    В зависимости от условий измерение оптической плотности раствора производят либо при длине волны максимального поглощения света (при Хыакс), либо при длине волны оптимального поглощения (при Хопт), либо при длине волны изобестической точки (при Яизобест)- Рассмотрим ЭТИ случаи. [c.58]

    Фотометрировапие золей AgBr однократным измерением оптической плотности [419] или с фиксированием ряда значений оптической плотности в процессе титрования [697] при строгом соблюдении известных условий является чувствительным и довольно точным методом определения бромид-ионов. Турбидиметрическим или нефелометрическим титрованием анализируют растворы бромидов с концентрацией до 0,6 мкг1мл с погрешностью порядка 5%, измеряя в первом случае интенсивность поглощенного, во [c.111]

    Обычно спектрофотометрические измерения проводят в таких условиях, когда оптическая плотность исследуемого раствора лежит в 1феде-лах А = 0,2—0,8, так как именно при таких значениях оптической плотности достигается минимальная ошибка спектрофотометрических измерений. [c.528]

    Если оптическая плотность испытуемого раствора меньше оптическо плотности раствора сравнения, то производят измерение оптической плотности раствора сравнения по отношению к испытуемому раствору п значение А берут со знаком минус. Предварительно для тех же условий строят градуировочныР график. Метод дифференциальной фотометрии с использованием как полол ительных, так и отрицательных значений А называется методом полной (двусторонней) дифференциальной спектрофотометрии (рис. 3). Он предложен советскими химиками В. Ф. Бар-ковскпм и В. И. Ганопольским. [c.38]

    Для более резкого изменения потенциала индикаторного электрода рекомендуются [316] следующие условия температура раствора — не выше 25° С, раствор должен содержать не менее 25 мл 25%-НОГО раствора аммиака и не менее 5 г аммонийных солен на каждые 100 мл раствора, а также лимонную кислоту. Количество кобальта не должно превышать 0,05 г, а концентрация феррицианида калия не должна быть ниже 0,05 N, так как более разбавленные растворы дают растянутую кривую титрования без резкого перегиба. Предложены и другие методы. Длугач и Резник [104] разработали фотометрический метод фиксации точки эквивалентности, основанный на измерении оптической плотности титруемого раствора селеновым фотоэлементом аммиачный раствор соли кобальта титруют феррицианидом калия, прибавляя немного индигокармина, обесцвечивающегося в конце титрования. Описаны амперометрические методы [498] с ртутным капельным электродом [312] или твердым вращающимся платиновым электродом [117, 313, 395] в последнем случае точку эквивалентности находят по току восстановления избытка феррицианида при потенциале —0,2 в (по отношению к насыщенному каломельному электроду). Известен метод амперометрического титрования с двумя платиновыми электродами [735, 909] и др. [818]. [c.109]

    Интенсивность окраски псевдорастворов комплексного соединения зависит от кислотности, концентрации реактива и времени выдерживания перед измерением оптической плотности раствора [522, 707]. Оптимальная кислотность фотометрируемого раствора должна соответствовать 0,05 N концентрации азотной кислоты (pH 1,8) [237, 707, 1532]. При оптимальной концентрации реактива (0,001—0,002%) максимальная окраска развивается через 5 мин. и постоянна в течение 30 мин., а затем ослабевает. Температуру окрашенных растворов также следует поддерживать постоянной, так как ее колебания оказывают влияние на интенсивность окраски. Тем не менее соблюдение постоянных условий позволяет достичь большой точности анализа. [c.101]


Смотреть страницы где упоминается термин Условия измерения оптической плотности: [c.14]    [c.246]    [c.18]    [c.209]    [c.226]    [c.245]    [c.185]    [c.35]    [c.100]    [c.104]   
Смотреть главы в:

Фотометрический анализ -> Условия измерения оптической плотности




ПОИСК





Смотрите так же термины и статьи:

Оптическая плотность

Плотность, измерение



© 2025 chem21.info Реклама на сайте