Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оптическая плотность погрешность измерений

    Интервал оптических плотностей, в котором общая погрешность измерения не превышает удвоенной минимальной, оказался несколько шире указанного кривой Шмидта (рис. 4.7, кривая /) и данными других авторов. Для однолучевых спектрофотометров и двухлучевых фотоколориметров этот интервал, в отличие от общепринятого (0,12—1,2), доходит до значений 1,35—1,45. В области малых значений оптических плотностей расширение интервала незначительно. [c.189]


    В химико-аналитических расчетах довольно часто приходится использовать разности измеренных величин, их суммы, произведения и т.д. Например, по разности двух взвешиваний определяют массу осадка в гравиметрическом анализе, по разности оптических плотностей находят светопоглощение компонента и т. д. Поэтому расчет погрешности разности или произведения имеет прямой практический интерес. [c.133]

    Фотометрические методы были разработаны для определения очень малых количеств различных веществ. Исходя из этого, в фотометрии допускались, особенно при визуальных методах измерения интенсивности окраски, относительные погрешности 5—10%. Однако с развитием приборостроения, переходом на измерения при монохроматическом излучении, выяснением химизма процесса значительно уменьшились погрешности измерения в абсолютном методе фотометрического анализа, когда оптическая плотность раствора измеряется по отношению к оптической плотности растворителя. [c.348]

    Диапазон определяемых содержаний в ААС лимитируется величиной аналитического сигнала (оптической плотности А), который можно измерить с необходимой точностью. Диапазон значений обычно составляет от нескольких сотых до 0,6—1,2 единиц оптической плотности. Таким образом, диапазон содержаний, определяемых методом ААС, не превышает 1—2 порядка величин. Проблемы с определением малых значений А связаны со способом измерения оптической плотности — по разности между интенсивностями падающего и прошедшего излучений. При малых оптических плотностях эта разность мала и погрешность, соответственно, велика. В областях высоких оптических плотностей погрешности связаны, главным образом, с существенными отклонениями от основного закона светопоглощения, вызванными недостаточной монохроматичностью излучения источника и влиянием рассеянного света, а также [c.247]

    Минимальная погрешность оптической плотности. Ошибки при измерении [c.65]

    При фотометрических определениях погрешность измерения у (оптической плотности А) зависит еще и от абсолютного значения оптической плот ности. Ввиду этого в области высоких значений погрешностей Ет (или (см. разд. 4.2.2) следует предусматривать дополнительные стандартные растворы. [c.45]

    При проведении измерений на разных уровнях измеряемой величины стандартные отклонения Sn и Sr, п, вообще говоря, не остаются постоянными. Поэтому хорошо отработанной методике измерений должна сопоставляться таблица или график взаимосогласованных пар значений X — S (или Sr.n) для разных уровней измеряемой величины. На рис. XIV. 3 в качестве примера приведена графическая зависимость Sm для оптической плотности D, регистрируемой атомно-абсорбционным спектрометром, от значений D. (Резонансное излучение меди Я, = 327,4 нм, спектрометр AAS = 1, п = 5). Зависимость Sr,n от D показывает, что минимальной относительной погрешности в измерении оптической плотности отвечает интервал 0,3 < D < 0,6. [c.820]


    Необходимо также помнить, что измерения почернений наиболее точны (погрешность примерно 0,001) в диапазоне О—1,3 единиц оптической плотности. При измерении почернений на уровне 1, единиц оптической плотности погрешность возрастает до 0,01, а при почернениях свыше 2,00 погрешность недопустима велика. - - [c.127]

    Лучшие результаты получают на спектрофотометрах, т. е. при измерении оптической плотности при монохроматическом свете. Некоторая погрешность связана также с показателем преломления раствора (/г). Для компенсации можно ввести поправку, подставляя в уравнение закона Бугера вместо е величину гп/ п 2) . Необходимо отметить, что при концентрации веществ меньше 0,01 М, как правило, эта поправка несущественна. [c.326]

    Определенный объем V раствора вещества А помещают в кювету толщиной I и облучают различные промежутки времени At, измеряя после каждого промежутка At оптическую плотность вещества В. Оптическую плотность лучше измерять в максимуме поглощения (погрешность измерений при этом минимальна). Далее строят зависимость оптической плотности от количества поглощенного света и определяют квантовый выход, пользуясь соответствующими формулами. [c.261]

    Второе условие экстремума Гта = оо не имеет реального смысла. Пример 2. Известно, что путем выбора толщины кювет при фотоколориметрическом или спектрофотометрическом определении можно изменять значения оптических плотностей А. На каком участке шкалы оптических плотностей растворов следует проводить измерение, чтобы погрешность была минимальной  [c.135]

    Ряс. 4.7. Зависимость относительной погрешности измерения концентрации от оптической плотности раствора (при 7 0,003  [c.188]

    Анализ уравнения (1.10) показывает, что с уменьшением пропускания исследуемого раствора (увеличением его оптической плотности) погрешность АГр возрастает. Так, при а = 0,5% и Гр = 1 относительная погрешность измерения Z) = 1 составляет 2%, а при D=2 она возрастает до 8,75%. При Гр < Г рассеянный свет приводит к уменьшению, а при Гр > 7 — к увеличению измеряемого пропускания. В результате присутствие рассеянного света ухудшает структуру измеряемого спектра, снижает ее разрешение. При Гр = Г величина ДГр = 0, поэтому рассеянный свет не влияет или мало влияет на результаты измерения пропускания нейтральных фильтров. [c.9]

    При теоретическом прогнозировании определяемого минимума необходимо учитывать также воспроизводимость результатов, влияние фона и погрешности измерения оптических плотностей, поэтому в уравнения (4.9) и (4.10) необходимо вводить соответствующие поправки, позволяющие объективно оценить значение Для учета влияния фона и погрешностей измерения А. Б. Бланк на основе метрологического обоснования предложил принять Лмин = 5-5д (где —стандартное отклонение. соответствующее оптической плотности Лмин). Тогда полученные при этом условии выражения определяемого минимума примут такой вид  [c.186]

    Для обеих длин волн построим графическую зависимость оптической плотности от концентрации раствора определяемого вещества (см. рис. 4.4,6). Из рисунка видно, что при изменении концентрации вещества в интервале от С до (АС) соответствующее ему изменение оптической плотности ДЛ будет гораздо больше при Хмакс. чем при Хмии- Так как погрешность измерения оптической плотности раствора приблизительно одинакова, то изменение концентрации ДС (погрешность определения) будет гораздо больше при Ямич, чем при Ямакс Угловой коэффициент 5 зависимости А = [(С), характеризующий чувствительность определения, будет значительно выше при Я акс. чем при Ямин- К такому же выводу приводит анализ уравнения основного закона светопоглощения А = ехС1. Продифференцировав это выражение по С (при / = 1), получим  [c.182]

    Воспроизводимость абсолютных фотометрических методов анализа, в которых оптическая плотность или пропускание) исследуемого или стандартного раствора измеряется относительно чистого растворителя или раствора холостогоъ опыта, обусловлена погрешностью измерения аналитического сигнала А, Т). [c.187]

    Рассмотрим для примера специфическую погрешность, вызванную полихро-матичностью поглощаемого света в фотоколориметрических методах анализа. Если в фотоколориметрии используются широкополосные светофильтры (кривая пропускания 1 на рис. 20) с заданной шириной полосы пропускания — М, то разбавленный раствор (кривая 3) поглощает практически во всем интервале У. -- а более концентрированный (кривая 2) — в более узком диапазоне длин волн (за вычетом заштрихованных областей). Поэтому оптическая плотность А оказывается не пропорциональной концентрации, а растет медленнее ее, в результате чего появляются отрицательные отклонения от закона Бугера — Ламберта— Бера. При измерении в области длин волн максимального поглощения эта ошибка уменьшается, однако ие исчезает совсем. Если измерения проводятся в немонохроматичном свете, аналитический сигнал — оптическая плотность — представляет собою как бы среднее арифметическое оптических плотностей отдельных узких, условно монохроматичных интервалов  [c.48]


    Аналогично проводят обработку результатов еще 5—6 опытов. Вычисляют константы к, к и находят погрешность измерений при доверительной вероятности 0,95. Основным источником погрешности является погрешность определения оптической плотности, достигающая 20%. [c.268]

    Наиболее точные измерения толщины пленки производятся на самих пленках. В основе таких методов лежат оптические и гравиметрические измерения, а также поглощение и эмиссия рентгеновского излучения. Наибольшую точность обеспечивает многолучевая интерферометрия, и в зависимости от используемого метода можно получить точность в пределах 1 или 2 нм. Для проверки толщины пленки можно использовать метод Фи-30, который заключается в нанесении отражающего покрытия поверх ступеньки осажденной пленки и в измерении серии интерференционных полос. Толщину пленки можно измерить также, делая срезы плоских кусков смолы, на которые было нанесено покрытие, и измеряя толщину слоя металла с помощью просвечивающего электронного микроскопа. Погрешность этого метода зависит от того, насколько точно под прямым углом к металлическому слою можно сделать срез смолы н фотографии среза. Простой метод точного определения толщины пленки и размеров зерна был описан недавно в [307]. Было установлено, что в линейных агрегатах латексных сфер материал покрытия накапливается только на свободной поверхности сфер. Увеличение толщины поперечного по отношению к линейному агрегату диаметра сферы будет равно удвоенной толщине пленки, в то время как толщина диаметра, параллельного агрегату, будет соответствовать толщине пленки. С помощью такого метода были измерены толщины пленок, полученных при различных способах их нанесения, с точностью 2 нм. Толщину пленки можно оценить по цветам интерференции илп в случае углерода по плотности осадка на белой керамической плитке. [c.214]

    Чтобы повысить точность измерений и устранить случайные погрешности, оптическую плотность находят как среднее из результатов трех измерений. Для устранения влияния на полученные результаты люфта (свободного 5(ода) в механизме барабана, установку стрелки показывающего прибора на нуль всегда проводят вращением барабана по часовой стрелке. [c.121]

    Чтобы определить значение оптической плотности, при которой погрешность измерения будет минимальной, продифференцируем (1.124)  [c.66]

    Применяемые в настоящее время оптические методы седиментационного анализа основаны на фотоколори-метрическом способе измерения количества оседающих частиц соответствующих размеров. При этом методе сравнивают яркость двух пучков света, один из которых проходит через эталонную кювету с чистым маслом, а второй — через кювету с анализируемым маслом. Измерения яркости проводят в кювете на определенном уровне в течение времени, соответствующего полному оседанию частиц. Фотоколориметрический способ применим в довольно узких пределах, так как при концентрации загрязнений менее 0,01% (масс.) погрешность метода возрастает ввиду малой оптической плотности суспензии, алри концентрации загрязнений свыше 0,1% (масс.) в анализируемом масле наблюдается явление коагуляции, искажающее результаты измерений. [c.30]

    Аналогичным образом, если у термометра несколько сдвинута измерительная шкала, и эта погрешность при измерении разности температур окажется скорректированной. Во многих методах исследования принцип коррекции заложен в саму конструкцию прибора. Так, в большинстве спектрофотометров измерения оптической плотности основано на поочередном сканировании исследуемого раствора и сравнительного раствора, имеющего близкий к нему состав, и вытекающей отсюда автоматической коррекции светопоглощения. [c.809]

    В заключение настоящего параграфа отметим, что в ряде методов относительная ошибка в измерении аналитического сигнала зависит от уровня измеряемого сигнала. В таких методах важно выбрать интервал измеряемых значений сигнала, отвечающих минимальной погрешности измерений, который соответствует и минимальной ошибке определения анализируемого компонента. На рис. 13 приведена кривая относительных погрешностей измерения -оптической плотности А в пламенном варианте атомно-абсорбционного метода при импульсном вводе пробы в воздушно-ацетиленовое пламя (определяемый элемент — медь, ).резонансн = 327,4 нм). [c.29]

    Сходную форму имеют кривые погрешностей для других фотометрических и абсорбционных методов, в которых минимальные погрешности при измерении оптической плотности отвечают диапазону 0,4—0,7. [c.30]

    Наиболее существенный недостаток производной спектрофотометрии заключается в резком ухудшении отношения сигнал шум. Независимо от способа получения производных процесс дифференцирования сводится к измерению малых разностей близких величин. Поэтому погрешности в исходных значениях оптической плотности чрезвычайно сильно влияют на производные спектры. Значительное ухудшение воспроизводимости является той ценой, которую платит производная спектрофотометрия за выигрыш в селективности. [c.24]

    Определялась оптическая плотность нефти в кюветах шириной. 1 мм. Погрешность измерений оптической плотности не превышала 1 °-о. Затем в нефть добавлялось нефтерастворимое неионо- [c.52]

    Все измерения в метрологии делят на прямые и косвенные. При прямых непосредственных измерениях числовое значение измеряемой величины х сразу получается из показаний прибора, при помощи которого выполняется данное измерение, например значение оптической плотности или пропускания при отсчете по шкале оптической плотности (пропускания) спектрофотометра или фотоколориметра. Результат каждого прямого измерения включает случайную погрешность, которая зависит от большого числа случайных факторов. Если отклонения, вызванные случайныл1И факторами, сравнимы по абсолютному значению с чувствительностью прибора, то они обнаруживаются приборами, и при п измерениях одной и той же величины получаются результаты Ль Х2, л ,, х , которые могут отлй  [c.26]

    В физико-химических иследованиях первый путь равносилен увеличению класса точности измерительных приборов или переходу к более прецизионным методам измерений. Второй путь представляется более доступным, но он пригоден лишь применительно к измерению экстенсивных величин. Кроме того, для успешного использования этого приема нужно быть уверенным в том, что абсолютная погрешность измерений не коррелирует с массой исследуемого образца и, следовательно, с измеряемым экстенсивным свойством. Так, если абсолютная погрешность измерения энтальпии сгорания для калориметра данной конструкции есть величина приблизительно постоянная для заданного интервала значений 100—5000 Дж, с целью снижения относительной погрешности определения следует сжигать навески, обеспечивающие большое тепловыделение. Аналогичным образом при определении коэффициента молярного погашения ИЗ измерений концентрации с и оптической плотности D = [c.805]

    Пределы измерения таких манометров зависят от их геометрических размеров и плотности уравновешивающей жидкости и, как правило, не превышает 10= Па (750 мм рт. ст.). Погрешность измерения составляет 2 мм для и-образных и 1 мм для чашечных (однотрубных) манометров. Применение оптических устройств для отсчета уровня позволяет повысить точность измерения. [c.357]

    На рис. 3 наглядно показано, что с увеличением числа секций погрешность аппроксимации уменьшается и, следовательно, уменьшается погрешность измерений. Для точного расчета величины абсолютной погрешности надо иметь в виду, что в пределах каждой ступени изменение оптической плотности совершается не по закону ломаной линии, образующей вогнутый прямой угол, а по закону той части кривой, которая заключена между точками Л и В. [c.206]

    В этом случае измерение оптической плотности фотометрируемого раствора желательно производить в той области спектра, в которой поглощение света определяемым соединением является максимальным. Это дает возможность провести количественное определение с наибольшей чувствительностью и меньшей погрешностью. [c.181]

    Оценку погрешности производят как описано в разделе (XIX. 2). Погрешность измерений оптической плотности (АО) на спектрофотометре не превышает 0,001, и общая погрешность Ьпределения констант скорости составляет 5%. [c.264]

    Метод измерения илирины линий наиболее надежен по сравнению с другими. Он заключается в определении точности воспроизведения маски и визуальной оценки изображения. Обычное измерение ширины линий состоит из серии 6 экспозиций и сравнения изображения на фоторезисте с изображением на маске. Если с помощью визуальной оценки поверхности слоя резиста достигнуто оптимальное время экспонирования, для дальнейшего его уточнения сравнивают ширину линий рельефа и шаблона. Допустимые погрешности ухода ширины линий зависят от размеров изображаемых структур и составляют для макролитографии (полиграфии) 3 мкм, а для микроэлектроники примерно 0,1 мкм. Модификация этого приема состоит в экспонировании через клин оптических плотностей и измерении ширины линий для разных клиньев. Определяют уход размеров в зависимости от времени экспонирования и выбирают количество экхнонирующего света, при котором уход размеров минимален (рис. 1,26). [c.45]

    Несмотря на простоту и удобство, практическое использование градуировочных графиков в ряде случаев вносит дополнительную погрешность при определении концентрации растворов как за счет субъективного построения графической зависимости, так и за счет несоответствия графических (масштабных) погрешностей и погрешностей измерений оптических плотностей. Поэтому для получения болег объективных результатов анализа часто пользуются одной из нижеприведенньгл аналитических зависимостей [см. уравнения (4.23) —(4.25) ], которые рассчитывают по экспериментальным данным методом регрессионного анализа (см. разд. 2.2). [c.192]

    В многокомпонентном спектрофотометрическом анализе, как и обычно, измерения оптических плотностей следует проводить относительно раствора сравнення, содержащего все используемые реагенты, для уменьшения систематических погрешностей, обусловленных наличием примесей в самих реагентах. [c.195]

Рис. 13. Относительная погрешность в измерении оптической плотности при атомио-абсорбцнонном определении в зависимости от оптической плотности А Рис. 13. <a href="/info/10120">Относительная погрешность</a> в <a href="/info/147122">измерении оптической плотности</a> при атомио-абсорбцнонном определении в зависимости от оптической плотности А
    Пример 3. Молярный коэффициент поглощения комплекса e eXa состава МеХз равен 5-101 Исходная концентрация реагента С х = моль/л исходная концентрация металла = 6,6 10 моль/л константа диссоциации реагента Ка.нх = 10" pH = 2. Измеренная в этих условиях оптическая плотность для толщины поглощающего слоя J см равна 0,30, Оценить константу образования комплекса рз = [МеХз]/([Ме +] [Х"] )и выбрать условия эксперимента, отвечающие минимальной погрешности в оценке константы Рз. [c.136]

    Вместо абсолютных значений изм яемого параметра (оптической плотности, флуоресценции или потенциала), в кинетических методах измеряют изменение этого параметра в ходе реакции как функцию времени. Таким образом, статические сигналы, вызванные, к примеру, фоновым поглощением образца, не вносят погрешности. Это является одним из основных преимуществ кинетических методов перед статическими измерениями. В то же время кинетические методы тре ют строгого контроля измерений времени и температуры. Преобразованный для обработки сигнал должен иметь максимально возможную точность по шкале времени. Температуру тоже следует ковтролировать достаточно строго (колебания ее ее должны превышать 0,01-0,1 С), так как она оказывает значимое влияние на скорость реакции (см. разд.6.2.3). [c.352]

    Оптимальные количества калия, определяемые этим способом,— 1 —10 мкг [[914], по другим данным — 5—50 мкг 1034,. 1591] Высокая чувствительность этого метода отмечается многими исследователями [196, 595, 2128] Погрешность определения около 6% [914], при очень малых количествах калия — около 10% [1824] Точность возрастает при измерении оптической плотности при 496 ммк [595, 1794]. Растворы подчиняются закону Ламберта — Бера. Фотометрическое определение калия в виде иодоплатината применяется при анализе цемента [1235], почвы [914, 1937], биологических объектов [1794] [c.94]

    Фотометрический метод с использованием комплекса железа(1П) с 1,10-фенантролином позволяет определять 10 % кобальта с погрешностью 3% [1248]. Метод основан на окислении кобальта комплексом и измерении оптической плотности трис-фенантролината же-леза(П). На этом же принципе основан метод потенциометрического титрования кобальта в присутствии 1,10-фенантролината раствором железа(111). Метод позволяет определять >10 % кобальта с погрешностью 2,5%. Скачок потенциала в конечной точке тйтрования составляет 120 мВ на 0,05 мл 10 М раствора Fe lg. [c.199]

    Относительный вклад перечисленных факторов зависит от спектра поглощения анализируе.мого вещества, особенностей прибора и условий анализа. Очевидно, что при последовательных измерениях одного объекта, не связанных с перестановкой кювет, включением и выключением пр11бора, погрешность результатов можно оценивать величиной Хсх-В остальных случаях следует использовать Хвоспр или величину с. о. оптической плотности характеризующую суммарную погрешность измерения без разделения ее на составляющие погрешности. [c.13]


Смотреть страницы где упоминается термин Оптическая плотность погрешность измерений: [c.159]    [c.85]    [c.806]    [c.841]    [c.123]    [c.14]   
Практическое руководство по фотометрическим методам анлиза Издание 5 (1986) -- [ c.76 , c.92 ]




ПОИСК





Смотрите так же термины и статьи:

Оптическая плотность

Плотность, измерение

Погрешность

Погрешность измерений



© 2024 chem21.info Реклама на сайте