Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Измерение степени кристалличности полимеров ДТА—ДСК-методами

    Наиболее простым и употребительным методом исследования кристалличности полимеров является измерение их плотностей. Метод основан на том предполол ении, что разность удельных объемов полностью аморфного и исследуемого образцов пропорциональна степени кристалличности полимера [25]. С повышением кристалличности плотность полимера возрастает. Зная значения плотности полностью аморфного и полностью кристаллического образцов, можно рассчитать степень кристалличности X полипропилена (в %) по формуле [26]  [c.70]


    Рентгенографический метод. Рассмотренный метод определения степени кристалличности полимеров по их плотности хотя и включает рентгенографический анализ, но его использование ограничивается однократным определением размеров элементарной ячейки. Рентгенографический метод в том виде, в котором он используется для определения степени кристалличности определенного полимера, основывается на измерении интенсивности рефлексов на рентгенограммах этого полимера. В зависимости от объекта исследования возможны некоторые варианты метода, однако в общем суть его состоит в идентификации резких пятен или колец (в зависимости от объекта) как рефлексов от кристаллической фазы и диффузного гало, или фонового рассеяния, как результата присутствия в веществе аморфного компонента (рис. 5.3,в). Если степень кристалличности вещества увеличивается, то растет и интенсивность кристаллических рефлексов, в то же время интенсивность аморфного гало уменьшается. Сравнивая эти интенсивности, можно определить степень кристалличности. [c.148]

    ИЗМЕРЕНИЕ СТЕПЕНИ КРИСТАЛЛИЧНОСТИ ПОЛИМЕРОВ ДТА-ДСК-МЕТОДАМИ [c.190]

    Важным технологическим приложением ИК-спектроскопии является измерение степени кристалличности это возможно благодаря различиям в положении и интенсивности полос поглощения в спектрах высококристаллического и полностью аморфного полимеров. Однако этот метод необходимо сочетать с другими методами измерения степени кристалличности. В сочетании с другими методами, например ЯМР-спектроскопией высокого разрешения и рентгеноструктурным анализом, ИК-спектроскопия может быть использована и для изучения стереохимической структуры макромолекулы. [c.188]

    Наиболее распространенным методом определения степени кристалличности полимера является дифференциальная сканирующая калориметрия (ДСК) [8,12]. Долю кристаллической фракции (X) можно оценить по отношению теплоты плавления измеренной при плавлении кристаллической фазы, к теоретическому значению этого параметра (ДЯ °), определенного для идеального кристалла, то есть [c.38]

    Картины дифракции рентгеновских лучей частично кристаллических полимеров, представителями которых являются полиамиды, состоят из пиков высокой интенсивности, соответствующих кристаллическим областям, и гало, отвечающего аморфным областям полимера. Измерение площадей под соответствующими участками кривых распределения интенсивности позволяет определять степень кристалличности полимера. Однако точность этого метода ограничивается воз.можностью разделения участков кривых, соответствующих кристаллическим и аморфным областям. Степень кристалличности промышленных полиамидов обычно колеблется от 40 до 70%. [c.240]


    Что же касается измерения степени кристалличности образца, то для этой цели с успехом применяются методы измерения плотности, теплот плавления, метод рентгеновской дифракции, метод инфракрасной спектроскопии, метод ЯМР широких линий и т. д., которые основаны па модели двухфазного строения полимеров, т. е. наличие кристаллических и некристаллических (аморфных) областей. Однако в данном случае возникает принципиальный вопрос о правомочности отнесения складок к аморфным участкам. Три последних метода, в которых применяется облучение образцов, позволяют в принципе измерять анизотропию их кристалличности, если образцы получены прессованием большого числа пластинчатых кристаллов. В этом смысле перечисленные методы дают информацию непосредственно о структуре поверхностного слоя, содержащего складки. В частности, как показывают результаты исследования методом ЯМР, относительное содержание участков, обладающих подвижностью, не превышает нескольких процентов. Отсюда следует, что на поверхности монокристаллов находится слой полимера, свойства которого близки к свойствам аморфного образца [52—54]. Кроме того, оказалось, что значения степени кристалличности монокристаллов полиэтилена, определенные перечисленными выше методами, находятся в пределах 80—90% [55—59]. [c.231]

    Такой метод не находит широкого применения, так как он требует определения к и ( а, а обе эти величины с трудом поддаются измерению. Однако этот метод и любой другой метод определения степени кристалличности полимера наиболее уязвимы в том отношении, что они основаны на представлении о полимере как о смеси чисто кристаллических и чисто аморфных областей. На самом деле существуют постепенные переходы текстуры от упорядоченных областей к неупорядоченным. С учетом этих ограничений метод плотностей представляет интерес, и с его помощью были определены степени кристалличности полиэтилена [27] и различных каучуков [1]. [c.88]

    Полиэтилен относится к группе кристаллизующихся полимеров. При комнатной температуре он частично закристаллизован. Степень кристалличности ПЭВД лежит в интервале 20-40%. Она значительно ниже степени кристалличности ПЭНД лежащей в интервале 50-75 %. Обычно под степенью кристалличности понимают долю групп -СНз-, находящихся в упорядоченном состоянии, имея в виду дальний порядок в трех измерениях. Степень кристалличности полиэтилена определяют различными методами рентгенографией, ИК-спектроскопией, ЯМР, дифференциально-термическим анализом, дилатометрией и др. Каждый из этих методов основан на определенном физическом явлении и дает в принципе несколько отличные от другого метода результаты. Однако эти различия несущественны. [c.142]

    Твердые образцы полиэтилена кристаллизуются не полностью. Относительное содержание кристаллического вещества в полимере может быть определено по измерению плотности, теплоты плавления, методами дифракции рентгеновских лучей или инфракрасной спектроскопии. Обычно для этой цели используется сопоставление интенсивности дуплета при 720— 731 см- который отсутствует в полностью аморфном полимере. Можно установить корреляцию между отношением интенсивностей компонент в дуплете и степенью кристалличности полимера, определенной другими методами 22. Однако этот метод не вполне надежен, что связано с трудностями разделения двух перекрывающихся полос поглощения. Кроме того, интенсивности компонент до некоторой степени зависят от ориентации образца. Необходимо также иметь в виду, что подобные измерения могут выполняться только на очень тонких пленках. Более удобно для определения степени кристалличности использовать измерения поглощения при 1303 сл1 , связанные с крутильными колебаниями группы СНг. Полоса при этой частоте изолирована от других полос спектра, и ее интенсивность не слиш-ко.м велика. Такой способ оценки кристалличности использовался в работах Никитина и Покровского ° , Миллера и Уиллеса Тобина и Каррано . [c.322]

    Надмолекулярная структура в значительной мере определяет механические свойства полимерных материалов. Наиболее важными методами изучения процессов кристаллизации и ориентации в полимерах являются рентгенография (электронография), электронная микроскопия, методы двойного лучепреломления и определения плотности и удельного объема полимеров. При измерении степени кристалличности наряду с рентгенографией применяют спектроскопию ЯМР и с нарушенным полным внутренним отражением. [c.346]

    Вопрос о применении поляризационного микроскопа и рентгеновских лучей уже обсуждался при рассмотрении измерения степени кристалличности (см. раздел 2.3.6). Сюда же следует отнести метод электронной микроскопии, широко применяемый при исследовании кристаллических структур [119], и метод ядерно-магнит-иого резонанса, являющийся экспериментальной базой исследований стереоизомерии полимеров [120]. [c.94]


    Методом обращенной газовой хроматографии можно определить степень кристалличности полимеров, Тст, Тпл, идентифицировать их, судить о проницаемости высокомолекулярных соединений для небольших молекул, исследовать набухание, пластификацию н термодинамику растворения полимеров, определить параметр взаимодействия Флори — Хаггинса, х, находить длину отрезка Мс между узлами сетки трехмерных высокомолекулярных соединений и вычислить плотность энергии когезии. В отличие от пиролитического варианта обращенная газовая хроматография является прямым методом (непосредственное изучение полимера без его разрушения). Кроме того, измерения проводятся быстро и просто на стандартных хроматографах с небольшим количеством полимера. [c.451]

    Другим методом, часто применяемым для определения степени кристалличности полимера, является измерение плотности материала. Удельный объем V можно выразить как [c.39]

    Исследование структуры высокомолекулярных соединений с помощью рентгеновского излучения основано главным образом на расшифровке рентгенограмм волокна, если принять при этом, что по наличию или отсутствию интерференционных полос на рентгенограммах можно различать кристаллические и аморфные полимеры. На этом основан метод определения степени кристалличности высокомолекулярных соединений. Поскольку (как уже указывалось) высокомолекулярные соединения никогда не бывают полностью кристалличными (полностью аморфное состояние, наоборот, не является редкостью), то приобретает значение определение степени кристалличности полимера. По Германсу, количество аморфной фракции пропорционально максимальной интенсивности возникающего расплывчатого кольца на рентгенограмме Дебая—Шерера. Получающиеся при этом значения можно дополнить и подтвердить калориметрическими измерениями. [c.197]

    При измерении степени кристалличности нескольких полимеров использовались полосы поглощения, характерные для кристаллов. Этот метод имеет то неудобство, что он не может применяться независимо от других способов [c.323]

    Данные по теплоемкостям и теплотам фазовых переходов при средних температурах, например от —20 до 300° С, нередко могут быть использованы для изучения свойств и строения полимеров. Пользуясь результатами измерения теплоемкостей полимеров, можно сделать выводы о существовании кристаллической и аморфной фаз этих веществ при различных температурах и в некоторых случаях вычислить степень кристалличности полимера, наблюдать и изучать процессы стеклования и кристаллизации, использовать калориметрические методы для определения теплот и энтропий плавления полимеров [17]. [c.246]

    Практически важной областью применения НК-спектроско-пии является измерение степени кристалличности, основанное на различиях в положении интенсивности полос поглощения в спектрах высококристаллического и полностью аморфного полимеров. Однако этот метод необходимо сочетать с другими независимыми методами измерения степени кристалличности. [c.230]

    Для оценки степени кристалличности полиоксипропилена кроме рентгеновских методов используют измерения плотности (плотности кристаллического и аморфного полимеров равны 1,157 и 1,002 г/см Соответственно) [83]. Стереорегулярность полимеров оценивают также по температуре плавления [83, 114], исходя из уравнения [c.257]

    С увеличением степени кристалличности, пик расширяется, становясь очень асимметричным, и сдвигается в область более высоких температур. Это свидетельствует не только о том, что релаксационный процесс связан с движениями в аморфных областях полимера, но и О том, что присутствие кристаллитов налагает значительные ограничения на молекулярные движения, обусловливающие этот релаксационный процесс. Эти представления были подтверждены результатами измерения молекулярной подвижности в различных образцах политетрафторэтилена методом ядерного магнитного резонанса [23]. [c.165]

    Механизм плавления полимеров рассматривают обычно как фазовый переход первого рода. Несмотря на то, что у высококристаллических полимеров, таких, как полиэтилен, поливиниЛ-иденхлорид, полиамиды, эфиры целлюлозы и политетрафторэтилен, наблюдаются резко выраженные температуры плавления , некоторые авторы считают, что при фазовом переходе первого рода сосуществуют несколько фаз, и что частично закристаллизованный высокополимер следует рассматривать как гомогенную, а не как двухфазную систему . В работе Мюнстера приведены веские доводы в пользу того, что плавление и кристаллизация высокополимеров могут быть представлены как переход второго рода. То обстоятельство, что ни один длинноцепной полимер не является полностью закристаллизованным, неизбежно приводит к выводу о существовании не температуры плавления, а интервала плавления. Ширина этого интервала зависит от степени кристалличности, длины цепи и метода измерения. Как было показано рентгенографическим методом, даже внутри кристаллических областей их р,азмеры при плавлении уменьшаются неодинаково, некоторые части этих областей расплавляются значительно раньше других . [c.16]

    Все экспериментальные исследования при этом можно разделить на две большие категории. К первой относятся опыты, в которых определяется валовая скорость развития кристаллической фазы из переохлажденной жидкости в изотермических условиях. В опытах такого типа необходимо регистрировать изменение каких-либо свойств полимера, весьма чувствительных к изменениям степени кристалличности. Плотность полимера как раз и является таким чувствительным и к тому же удобным для измерений свойством. В некоторых благоприятных случаях возможно также применение и других методов, таких как инфракрасное поглощение или деполяризация проходящего света. [c.216]

    Первой задачей при обработке рентгенограмм полимеров является отделение кристаллических рефлексов от аморфного гало. Эта задача тесно связана с определением степени кристалличности по рентгенографическим данным. Определение степени кристалличности С основывается на сопоставлении рентгенограммы исследуемого образца с рентгенограммами эталона или на сопоставлении интенсивности кристаллических и аморфных рефлексов. При применении последнего способа при обработке рентгенограмм натурального каучука получа-ли з. 231 завышенные значения С. Однако анализ причин этого явления позволил отработать достаточно точную методику . Наиболее подробно измерение степени кристалличности этими методами проводилось для натурального каучука - . Рентгенографическим методом определяли значение С также для дивинилового каучука СКД и полихлоропрена - 210. 288 определения [c.60]

    При определении содержания кристаллической фазы при помощи измерения любой другой физической величины такн<е всегда используются соответствующие значения этой величины для низкомолекулярпых кристаллических гомологов (например, при оценке кристалличности полиэтилена по теплосодержанию используются значения скрытых теплот плавления низкомолекулярных парафинов). Оценка степени кристалличности сравнепиедг на рентгенограмме интенсивностей рефлексов, приписываемых рассеянию на аморфных и кристаллических областях, является также ненадежной, поскольку до выяснения природы кристалла полимера нельзя определить и характер рассеяния в таких кристаллах. Следовательно, и в этом методе молчаливо предполагается тождественность строения кристаллов полимеров и их низших гомологов. Тот же дефект содержится и в оценке степени кристалличности по инфракрасным спектрам, где для сравнения используются спектры низкомолекулярпых веществ. Таким образом, все оцетгки степени кристалличности полимеров являются формальными и должны быть пересмотрены после выяснения природы кристаллов полимеров. [c.82]

    Измерение степени кристалличности — важное технологич. приложение ИК-спектроскопии. Этим методом можно получить результаты часто значительно быстрее, чем другими кроме того, этот метод особенно удобен, если необходимо выполнить ряд измерений при различных условиях (напр., при различных темп-рах). Измерения основаны на различиях, к-рые имеются в спектрах высококристаллич. и полностью аморфного полимеров. Эти различия м. б. обусловлены внутримолекулярными или межмолекулярными взаимодействиями. Для данного полимера невозможно предсказать заранее вид этих различий, и поэтому в подавляющем большинстве случаев их устанавливают опытным путем. Обычно наблюдают изменения положения или интенсивности полос поглощения в ИК-спектрах. [c.533]

    Наглядным примером могут служить измерения стенени кристалличности найлона-6,6, т. к. в его спектре есть отдельные полосы, обусловленные поглощением только аморфных (Я,= 8,8 мкм) и только кристаллич. (Х,= 10,7 мкм) областей. Из имеющейся зависимости интенсивностей указанных полос от плотности, можно получить степень кристалличности образца. Недостаток метода в том, что его нельзя использовать независимо от др. методов измерения степени кристалличности (в данном случае измерения плотности). Если выбранная полоса имеется только в спектре кристаллич. полимера и отсутствует в спектре аморфного, измерив ее интенсивность при jpaзныx темп-рах, можно найти точку плавления образца. [c.533]

    Гендус и Шнелл предложили удобный метод измерения степени кристалличности но сопоставлению полосы при 1303 см характерной для аморфного полимера, с полосой средней интенсивности при 1894 см , характерной для кристаллического полимера и обычно трактуемой как бинарная комбинация полос 1168(Л ,) + -f 731 (В1и)- Этот метод особенно удобен тем, что не требует специальной калибровки для получения абсолютных значений степени кристалличности. [c.322]

    Кристаллизацию можно обнаружить рентгенографически, инфракрасной опектроскопией и другими методами. Наиболее простой метод определения степени кристалличности полимера состоит в измерении платности, так как у однородных полиамидов существует приближенная линейная зависимость между степенью кристалличности и удельным объемом. [c.33]

    Для независимого определения степени кристалличности полимеров необходимо знать теплоту плавления полностью закристаллизованного полимера. Такие данные для полимеров, как правило, отсутствуют. Лишь для линейного полиэтилена эта величина определена путем экстраполяции значений теплот плавления низкомолекулярных н-парафинов на цепь бесконечной длины она составляет примерно 293 кДж/кг [147]. Поэтому обычно для расчета на основании этого уравнения используют другой путь. Степень кристалличности находят при определенной температуре другими методами (по данным измерения плотности, рентгеновским методом и др.) и, используя эти значения, рассчитывают ДЯпд. [c.101]

    Два последних высокомолекулярных алифатических углеводорода (полиэтилен и гидрированный полибутадиен) уникальны в том отношении, что они представляют собой примеры нерегулярно разветвленных структур. Фокс и Мертин при изучении инфракрасных снектров углеводородов в области 3—4 [л обнаружили полосу поглощения при 3,38 ц в спектре полиэтилена, которая является характеристической областью колебаний связи С—Н в метильных группах. Было определено, что соотношение СНз составляет от 1/д до 1/70- Все эти величины значительно превышают частоты, которых следовало ожидать, если бы полимеры представляли собой линейные углеводороды. Многие исследователи с тех пор способствовали детальной расшифровке инфракрасных спектров полиэтилена. Наиболее полные и точные исследования провели Рагг [28] и Кросс [9]. Последняя работа представляет особый интерес, поскольку в ней была определена зависимость между интенсивностью поглощения метильных групп и плотностью полимера. Степень кристалличности полиэтилена была определена при помощи нескольких различных методов, основанных, например, на измерениях плотности инфракрасных спектров, дифракции Х-лучей и теплоемкости. Ни один из этих методов не принимался за абсолютный, но метод, основанный на определении плотпости полимера, по-видимому, один из дающих наиболее достоверные данные. Поэтому Кросс впервые установил, что существует тесная зависимость между числом метильных групп в нолиэтиленах и их кристалличностью. [c.169]

    Особенно большое значение имеет ИК-спектроскопия [ИЗ], так как она может быть применена для исследования нерастворимых сшитых полимеров. Этот метод используется как в чисто аналитических целях, например для измерения количества функциональных групп [114], [115], так и для определения строения [116] (например, микроструктуры полидиенов, см. пример 3-30 разветвления в полиэтилене [117]). Он является иногда самым надежным методом определения состава сополимеров (сополимеры этилена с пропиленом [118]). Определение степени кристалличности с помопхью ИК-спектроскопии рассматривалось в разделе 2.3.6. [c.94]

    Существуют различные методы определения степени кристалличности. Ее можно оценить по измерению плотности, используя теплофизические методы, а также методы ядерного магнитного резонанса (ЯМР), инфракрасной спектроскопии (ИК-опектроокопии), рентгеноструктурного анализа. Значения степени кристалличности, полученные для одного и того же полимера разными методами, иногда не совпадают. Это несовпадение часто связано с тем, что разными методами определяются совершенно разные величины, порой лишь косвенно связанные с х. Например, методом ЯМР определяется динамическая степень кристалличности, представляющая собой отношение числа неподвижных звеньев к общему числу звеньев в полимерном образце. Очевидно, что найденная таким образом динамическая степень кристалличности в определенны.х условиях (например, при температурах, меньших температуры стеклования аморфной прослойки), никоим образом не может рассматриваться как истинная степень кристалличности. Другой причиной указанных расхождений в определении х является заведомо некорректное измерение этой величины, тогда как прецизионное определение степени кристалличности иногда оказывается очень трудоемким. [c.44]

    Длинные ветви a iи по себе также могут, конечно, содержать Бсе три типа разветвленных структур. Наличие метильных и этильных групп лучше всего определяется по поглощению в инфракрасной области при 7,25 U и ll,2j.i [4] и в основном обусловлено короткими разветвлениями. В полимере может иметься некоторое количество разветвлений с метильными группами, не обусловленных обратным захватом . На ссновакии измерений плотности и степени кристалличности установлено, что число коротких разветвлений может быть от 1 до 8 на 100 атомов углерода в главной цепи. На основании определений молекулярного веса по методу светорассеяния и радиусов вращения [8, 9] установлено, что одно длинное разветвление приходится в среднем на 300—3000 углеродных атомов. [c.110]

    Кун [74] применил этот метод для определения степени нитрования нитрата целлюлозы, а Мэйнард и Мошель [79] — для определения кристалличности полихлоропрена. Последние исследователи использовали внутренний эталон как меру толщины пленки, преодолев таким образом некоторые из трудностей, встречающихся при применении пленок для количественной работы. В качестве внутренного эталона для определения толщины пленки или общей концентрации полимера была использована валентная полоса С — Н-связи, лежащая около 3,4 мк. Для измерения толщин могут быть также использованы валентная полоса двойной связи С=С около 6,0 мк и деформационная полоса связи С — Н около 6,9 мк. Мэйнард и Мошель показали, что пропорциональность между интенсивностью полос при 12,8 и 10,5 мк чувствительна к степени кристалличности и температуре полимеризации. [c.274]

    Плавление — это фазовый переход первого рода, сопровождающийся скачкообразным изменением основных термодинамических характеристик полимера — удельного объема V и энтальпии Н. Как следует из соотношения (2.1), и зависят от степени кристалличности образца X. Для образца со 100 %-ной кристалличностью они определяются конформационными характеристиками макромолекулы и силами межцепного взаимодействия и рассчитываются с помощью соотношения (2.1) по измеренным значениям и ДЯ и значению X, определенному для этого же образца независимым способом. Этим методом было получено большинство значений Ду и АНт, приведенных в табл. 2.4. Значения АНщ можно определить и другими способами. Например, по зависимости температуры плавления полимера от содержания низкомолекулярного разбавителя, описываемой уравнением Флори [58] 1/Тт — 1/Г . р = (Я АНт) У Ур) (фр — Ххф ), где Тт и Т — температуры плавления смеси полимер — разбавитель и исходного полимера соответственно. Для этого строят график зависимости 11Тт—11Т о)/Фс от фр и из отрезка, отсекаемого полученной прямой на оси ординат, который равен (Я/АНт) У1Ур)< определяют АНт- [c.173]

    Полимер может существовать как в аморфном, так и в кри еталлическом состояниях [1259], в зависимости от условий обработки. Вильсон и Пейк [1260], изучая ядерный магнитный резонанс, показали, что при —180° молекулярное движение у тефлона практически отсутствует, и резонансная линия ядерного поглощения имеет вид, характерный для кристаллической ре-петки при температуре +2° степень кристалличности оценивается в 72 5%. Уэйр [1261] при изучении зависимости деформации от давления установил, что политетрафторэтилен имеет три полиморфные кристаллические модификации. Тройная точка перехода лежит при — 70 и давлении 5000 атм. В связи с этим в политетрафторэтилене наблюдается несколько точек перехода, что было подтверждено термическим анализом [1262], измерением удельной теплоемкости при разных температурах [1263] и методом ядерной магнитной релаксации [1264]. [c.310]

    Ширина линий резонансных сигналов транс-полимера (в блоке) примерно в 2—3 раза больше ширины линий резонансных сигналов г ис-полимера. Следует указать, что если температура стеклования ис-полимера ниже температуры, при которой проводилась съемка спектров (45°С), то для обеих полиморфных форм т/занс-полиме-ра температура стеклования выше 45° С. Полагают, что ниже истинной термодинамической температуры плавления твердый транс-полимер содержит микрообласти кристалличности. Наличие существенно иммобильных участков транс-полимерной цепи должно приводить к уменьшению интенсивности компонент спектра высокого разрешения и обусловливать уширение линий аморфного полимера. Степень кристалличности, измеренная по уширению сигналов в спектре ЯМР С для транс-полиизопрена, близко совпадает со степенью кристалличности твердого полимера, определенной рентгеноструктурным методом [4], [c.195]

    К сожалению, степень кристалличности полипропилена в настоящее время не может быть определена независючым калориметрическим методом (так как отсутствуют значения и потому не может бьпъ проведено сравнение абсолютных значений степени кристалличности, полученных калориметрическим и дилатометрическим методами. Что касается наиболее детально изученного с использованием различных методов полимера — линейного полиэтилена, то тщательный анализ значений степени кристалличности, полученных на основании измерений теплоемкости и плотности, показывает что для одного и того же образца Су примерно на 15% меньше, чем Од. [c.180]

    Это различие обусловлено тем, что величина теплоты плавления, получаемая при калометрических измерениях, определяется исходной степенью кристалличности системы, тогда как значение АЯд, рассчитываемое по уравнению (4), соответствует предельному случаю полностью кристаллического полимера. Более высокие значения теплот плавления ПА-16, рассчитанные для систем полимер — спирт, дают основания высказать предположение о реализации более активного взаимодействия (обусловленного, например, возможностью образования водородных связей) макромолекул полимера со спиртами, чем с углеводородами. Теплоты плавления ПА-16, рассчитанные по понижению Гпл полимера в присутствии углеводородов, дают значения, весьма близкие к значениям, найденным из данных ДТА. Так, например, в цетане, являюш,емся фактически аналогом боковой цепи полимера, значения АН, найденные двумя методами, совпадают, что свидетельствует об одинаковом характере взаимодействия боковых метиленовых групп полимера друг с другом и с молекулами растворителя. [c.155]


Смотреть страницы где упоминается термин Измерение степени кристалличности полимеров ДТА—ДСК-методами: [c.192]    [c.536]    [c.534]    [c.241]    [c.388]    [c.196]    [c.160]    [c.164]    [c.218]   
Смотреть главы в:

Экспериментальные методы в химии полимеров - часть 2 -> Измерение степени кристалличности полимеров ДТА—ДСК-методами

Экспериментальные методы в химии полимеров Ч.2 -> Измерение степени кристалличности полимеров ДТА—ДСК-методами




ПОИСК





Смотрите так же термины и статьи:

Кристалличности

Кристалличность степень кристалличности

Полимеры методом ГПХ

Степень кристалличности

Степень кристалличности полимер



© 2025 chem21.info Реклама на сайте