Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ориентация замещения в ароматическом ядре

    Влияние заместителей при сульфировании аналогично другим реакциям электрофильного замещения в ароматическое ядро, причем для сульфирования характерна средняя селективность в отношении ориентации в разные положения молекулы и относительной реакционной способности. Так, толуол сульфируется в 5 раз быстрее бензола, причем получается 75% пара-, 20% орто-и 5% лета-толуол сульфокислот. Электроотрицательные группы значительно дезактивируют ароматическое ядро, вследствие чего не удается ввести вторую сульфогруппу при действии серной кислотой. В отношении состава изомеров сульфирование имеет некоторые особенности, зависящие от обратимости реакций. При мягких условиях состав изомеров определяется относительной реакционной способностью различных положений ядра, при нагревании или при большой продолжительности реакции он зависит от термодинамической стабильности изомеров. Так, нафталин в первом случае дает главным образом 1-сульфокислоту, а во втором 2-изомер. [c.329]


    Активирующая группа — заместитель, под влиянием которого возрастает реакционная способность ароматического ядра по сравнению с бензолом в реакциях электрофильного или нуклеофильного замещения. См. также Правила ориентации в бензольном ядре. [c.13]

    Ароматическое кольцо, с которым связан галоген, может, конечно, подвергаться типичным реакциям электрофильного замещения нитрованию, сульфированию, галогенированию, алкилированию по Фриделю — Крафтсу. Подобно другим заместителям, галоген влияет на реакционную способиость и ориентацию замещения в этих реакциях. Как было показано в разд. 11.5, галоген необычен тем, что он дезактивирует ядро, оставаясь орто.пара-ориентантом. [c.785]

    В первом способе образуется также некоторое количество м-анилин-сульфокислоты, или метаниловой кислоты. Эта кислота получается при сульфировании анилина избытком кислоты, так как в этих условиях группа NHg превращается в значительной степени в группу NH , ориентирующую замещение в мета-положение (см. Ориентация замещения ароматического ядра ). Способом запекания получается сульфаниловая кислота, не содержащая изомеров. О мнимых внутримолекулярных перегруппировках, происходящих при сульфировании анилина, было сказано в томе I. [c.458]

    В заключение можно сказать, что как реакционная способность, так и ориентация при электрофильном замещении в ароматическом ядре определяются скоростями образования соответствующих промежуточно образующихся карбониевых ионов. В свою очередь эти скорости зависят от устойчивости этих ионов, которая зависит от электронодонорного или электроноакцепторного влияния заместителей. [c.354]

    Химические свойства. Реакции с участием фенолов можно разделить на две группы по гидроксигруппе и по ароматическому ядру. Гидроксигруппа взаимодействует со спиртами, кислотами, оксидами, гидроксидами, алкилгалогенидами. По ароматическому ядру протекают преимущественно реакции электрофильного замещения согласно правилам ориентации. [c.327]

    Для исследования механизма ориентации замещения ароматического ядра применялась в большинстве случаев реакция нитрования, однако доказано, что полученные результаты качественно справедливы и для других электрофильных замещений. [c.35]

    В реакциях замещения ароматического ядра равновесие между изомерами не устанавливается (оно устанавливается только в некоторых обратимых реакциях, как, например, в реакциях сульфирования, но даже и в этих случаях лишь при более длительном соприкосновении реагентов и при повышенной температуре). В нормальных реакциях замещения ароматического ядра соотношение между различными изомерами обусловлено относительными скоростями трех одновременно протекающих, конкурирующих реакций, в которых образуются эти изомеры (ориентация определяется кинетическими факторами). [c.33]


    Активной частицей при реакции сочетания с диазосоединениями является агент электрофильного замещения К — N , что совершенно однозначно доказано кинетическими исследованиями [116—118], а ранее вытекало из теории ориентации в ароматическом ядре. Химия связанных с сочетанием реакций — нитрозирования, диазотирования и дезаминирования — была недавно рассмотрена в подробном обзоре [119] и состоит, видимо, из последовательности реакций, изображаемой схемой (У1-6)  [c.354]

    Какова роль электронных эффектов при ориентации в реакциях электрофильного замещения в ароматическом ядре  [c.109]

    Реакции фотозамещения могут протекать как по радикальному, так и по гетеролитическому механизмам. В возбужденном состоянии меняется реакционная способность различных положений ароматического ядра, поэтому меняются правила ориентации при замещении по сравнению с основным состоянием  [c.232]

    Для большинства реакций замещения индиго ориентация и последовательность замещения остаются общими—сначала замещается положение 5, затем 7 и, наконец, в отдельны х случаях, положение 4. Такой порядок замещения согласуется с обычной ориентацией при замещении в ароматическом ядре большинства производных индола. [c.203]

    Сформулированные правила ориентации пригодны только в случае гетеролитических замещений. Что касается замещений в ароматическом ядре по гомолитическому (радикальному) механизму, то они протекают по иным законам. [c.27]

    Правила ориентации при алкилировании в общем подобны другим реакциям электрофильного замещения в ароматическое ядро, но строение продукта может существенно изменяться в зависимости от катализаторов и условий реакции. Так, электронодонорные заместители и атомы галогена направляют дальнейшее замещение преимущественно в пара- и орго-положения, однако в более жестких условиях и особенно при катализе хлоридом алюминия происходит изомеризация гомологов бензола с внутримолекулярной миграцией алкильных групп й образованием равновесных смесей, в которых преобладают термодинамически более стабильные изомеры. Ранее эта реакция встречалась применительно к изомеризации ксилолов в бо" [c.232]

    Молекула антрахинона представляет собой своеобразную систему, состоящую из двух бензольных ядер, соединенных двумя карбонильными группами. Таким образом, каждое бензольное кольцо имеет два заместителя второго рода в орго-положении. Такое размещение заместителей приводит к несовпадающей ориентации и дезактивации молекулы антрахинона в целом. Поскольку ароматические ядра разобщены карбонильными группами, замещение в одном из ядер не приводит к заметному изменению реакционной способности второго ядра. В связи с этим образование моносульфокислот всегда сопровождается получением дисульфокислот в качестве побочных продуктов. Схема сульфирования антрахинона представлена на стр. 47. [c.46]

    Б. Ориентация замещения в ароматическом ядре [c.30]

    Влияние заместителей на реакционную способность ароматического ядра и ориентацию вступающей нитрогруппы такое же, как при других реакциях электрофильного замещения в ароматическое ядро. Ввиду значительного дезактивирующего влияния нитрогруппы каждая последующая стадия нитрования протекает значительно медленнее предыдущей l(k //г -lXl]. Поэтому реакцию л/ожно осуществить с высоким выходом любого из продуктов последовательно-параллельного замещения (моно-, ди- или три-нитролроизводных), подбирая силу нитрующего агента и температуру. Так, при нитровании толуола вначале в более мягких условиях (40°С) образуются мононитротолуолы (смесь 58—59% орто-, 4—5% мета- и 36—39% паро-изомеров), которые затем в более жестких условиях (70—80°С) дают дннитротолуолы (смесь в ос-новнсм 2,4- и 2,6-изомеров) и в конце концов — тринитротолуол  [c.343]

    В связи с тем, что изучение ориентации в бензольном ядре играло такую большую роль в нача.че развития теоретической органической химии, сейчас кажется уместным сосредоточить основное внимание на изучении ориентации и реакционной способности и не останавливаться на особенностях реакций, протекающих в различных экспериментальных условиях. Однако именно эта последняя область сейчас заметно развилась, например, кинетический изотопный эффект использовался для установления того, является ли замещение ароматического водорода с уходом его в виде протона стадией, опреде- [c.275]

    Полученные данные показьшают, что в присутствии бензолсульфо-кислоты нарушается обычный ход электрофильного замещения ароматического ядра. При алкилировании н-олефинами катализатор бензолсульфокислота способствует образованию, в основном, орто-замещенных алкилфенолов (2- и 2,6-структур). Это означает, что обьганые правила ориентации в реакции алкилирования фенола сохраняются до тех пор, пока процесс протекает при кинетически контролируемых условиях (при низкой температуре и с малыми количествами катализатора). При термодинамически контролируемых условиях реакции, т. е. при высоких температурах, продолжительном времени реакции и больших количествах сильнодействующих катализаторов, имеет место деалки-лирование и переалкилирование, способные привести к необычным продуктам реакции. [c.40]


    Относительная реакционная способность и эффекты ориентации в ароматическом ядре количественно варьируют очень сильно. Толуол в 200 раз реакционносиособнее бензола в реакции бромирования в уксуснокислом растворе, и только в 30 раз более реакционносиособен при нитровании в среде нитрометана. Причины такого различия не отражены в данном упрощенном рассмотрении. Ошибки возникают при отождествлении промежуточного соединения в реакции с переходным состоянием в стадии, определяющей скорость реакции замещения. Хотя переходное состояние, вероятно, очень похоже на это промежуточное соедгшение, но оно с ним не тождественно. В истинных переходных состояниях степень вытягивания я-электронов из ароматической системы, возможно, меняется с природой вступающего заместителя. [c.363]

    В одной из теорий ориентации замещения ароматических соединений, основанной на концепции Вернера о частичном расходовании химического сродства (Флюршейм, 1902 г.), принималось, что некоторые атомы, как, например, пятивалентный атом азота КОз-группы, расходующий все свое сродство на соединение с атомами кислорода, развивает слабое сродство по отношению к углероду, тогда как, например, кислородный атом фенольной групны, связанный одной пз своих валентностей с водородом, сильно влияет на атом углерода, с которым он связан второй валентностью. Таким образом, атом углерода ароматического ядра может быть связан со своим заместителем либо связью с большим сродством, либо связью с малым сродством. В свою очередь этот атом наводит в остатке молекулы поочередно слабые и сильные связи (изображенные тонкими и жирными линиями). В первом случае атомы в орто-пара-положспиях обладают большим остаточным сродством (изображенным длинными пунктирными линиями) и, следовательно, опи более реакционноспособны во втором случае повышенной реакционной способностью характеризуются ета-положения. [c.31]

    Механизм ориентации замещения в бензольном ядре. Реагенты, под действием которых происходят реакции замещения ароматического ядра обсуждаемого здесь типа, являются электрофильными реагентами. Эти реагенты представляют собой или образуют в процессе реакции положительно заряженные ионы или молекулы, обладающие свободной орбитой, как, например Вг+, N0 , SO3 или HSOреагенты атакуют те положения бензольного ядра, в которых электронная плотность наибольшая. [c.35]

    Приведите правила ориентации в бензольном ядре и механизм электрофильного и нуклёофильного замещения в ароматическом ядре. [c.122]

    Эффекты ориентации, вызываемые электронопритягивающими, ила электроно акцепторными, группами, а. Ониевая группа. Для понимания механизма замещения ароматического ядра важную роль сыграло открытие, что триметиланилинийнитрат нитруется исключительно в лета-положение, причем скорость реакции исключительно. ала, что указывает на сильную дезактивацию ядра (Д. Форлендер, 1919 г.). Ониевая группа, обладающая полным- -е-зарядом, проявляет сильный индукционный электронопритягивающий эффект (—I), за счет которого происходит общее падение электронной плотности в ядре, с одной стороны, и большее уменьшение электронной плотности в ортл-лара-положениях,—с другой. Замещение происходит в лета-положении, в котором электронная плотность уменьшается в меньшей степени. Селективная дезактивация орто-иара-положений обусловлена электронными смещениями в ядре под влиянием —/-эффекта ониевой группы. Если бы эти смещения были полными, то при этом образовались бы хиноидные структуры, подобные структурам, изображенным формулами [c.35]

    В процессе замещения ароматического ядра имеются две важные стороны, подвергавшиеся широкому обсуждению, а именно ориентация и активация и дезактивация ядра. В отношении явлений ориентации было предложено несколько эмпирических правил, из которых наибольшую известность имеет правило Крума-Брауна-Гибсона. Что касается явлений активации и дезактивации, то давно уже было признано, что все иеша-ориентирующие группы оказывают дезактивирующее действие, тогда как орто-пара-орткшрующт группы, за исключением галоидов, вызывают активацию бензольного ядра. [c.109]

    В настоящее время некоторые исследователи [25] допускают образование производных дигидро бензола как промежуточных образований в реакциях Фриделя—Крафтса, но это определенно не доказано. Однако исследовапия в области каталитического бромирования ароматических углеводородов обнаружили образование промежуточных продуктов присоединения при замещениях ароматического ядра и создали основания для теории, которая в состоянии дать логичную интерпретацию для ориентации и действия субституентов в реакциях Фриделя—Крафтса. [c.74]

    Рассмотрим теперь причины селективности силикагеля с гидроксилированной поверхностью при элюировании неполярным элюентом в отношении алкилпроизводных ароматических углеводородов. В этих углеводородах заместители, во-первых, изменяют распределение электронной плотности в ароматическом ядре молекулы, т. е. изменяют ее специфическое взаимодействие с адсорбентом. Во-вторых, они могут по-разному влиять на неспецифическое межмолекулярное взаимодействие адсорбат — адсорбент и адсорбат— элюент, а следовательно, и на ориентацию молекул адсорбата. Алкильные заместители в алкилбензолах, хотя и не сильно, но по-разному влияют на распределение электронной плотности в бензольном кольце и, следовательно, могут по-разному изменять специфическое межмолекулярное взаимодействие бензольного кольца с гидроксильными группами поверхности силикагеля. В н-алкилзамещенных бензола изменение влияния алкильного заместителя на распределение электронной плотности в бензольном кольце при удлинении алкильной цепи быстро становится незначительным. Однако в этом случае про исходит увеличение вклада неспецифических межмолекулярных взаимодействий не только адсорбат — адсорбент, но и адсорбат — элюент, т. е. взаимодействий алкильной цепи молекул замещенных ароматических углеводородов с молекулами неполярного элюента — к-гексана. Поэтому заместители влияют на ориентацию таких молекул на поверхности. [c.287]

    В связи с замещением ароматических соединений, обладающих ониевой группой, связанной с ядром, упомянем также следующее при нитровании анилина в присутствии концентрированной серной кислоты образуется более 50% ж-нитроапилина. В этих условиях ориентация определяется группой По той же причине [c.36]


Смотреть страницы где упоминается термин Ориентация замещения в ароматическом ядре: [c.201]    [c.245]    [c.286]    [c.317]    [c.145]    [c.8]    [c.45]    [c.47]    [c.496]    [c.170]   
Смотреть главы в:

Органическая химия -> Ориентация замещения в ароматическом ядре




ПОИСК





Смотрите так же термины и статьи:

Ориентация при замещении в беи



© 2025 chem21.info Реклама на сайте