Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

О некоторых свойствах карбенов

    О некоторых свойствах карбенов [c.62]

    Из всех нефтепродуктов вяжущими и спекающими свойствами в наибольшей степени обладают нефтяные остатки, ресурсы которых весьма велики. Однако все они характеризуются недостаточными значениями коксуемости (10—25% по Конрадсону), некоторые из них имеют малую адгезионную способность, высокое содержание серы. Поэтому они не могут быть использованы в производстве электродной продукции без дополнительной обработки, приводящей к изменению их химического состава и свойств. Лучшими следует считать связующие вещества, которые имеют коксовое число по Конрадсону 40—50% и температуру размягчения 80—90 °С по К и Ш. Такие свойства связующих веществ обусловливаются химическим составом, т. е. оптимальным соотношением в них различного класса соединений и прежде всего асфальтенов, смол, высококонденсированных ароматических углеводородов, карбенов и карбоидов. Особо важное значение придается группе тяжелых ароматических углеводородов, которая способствует протеканию при обжиге изделий реакций конденсации. [c.75]


    Вяжущие свойства связующего проявляются как в процессе приготовления анодной массы, так и при формировании самообжигающихся анодов. При смешении сухой шихты со связующим оно растекается на поверхности коксовых частиц, частично заполняя их поры, и тем самым создает прочную связь между отдельными зернами. В связи с этим особо важное значение приобретают поверхностные свойства и вязкостно-температурные характеристики связующих веществ, зависящие от их химического состава и происхождения. Вязкость связующего должна обеспечить достаточную пластичность и текучесть анодной массы, однако протекание его между зернами кокса в электролизной ванне недопустимо., Спекающая способность связующего проявляется в процессе формирования анода или обжига электрода оно должно цементировать отдельные зерна сухой шихты, выполняя роль коксовых мостиков. Спекающая способность является обобщающей характеристикой связующего и в первом приближении оценивается коксуемостью нефтяного остатка, а в конечном счете — показателями качества обожженных изделий (механической прочностью, удельным электросопротивлением, реакционной способностью и др ) Из всех нефтепродуктов вяжущими и спекающими свойствами в наибольшей степени обладают нефтяные остатки, ресурсы которых весьма велики. Однако все они характеризуются недостаточными значениями коксуемости (10—25% по Конрадсону), некоторые из них имеют малую адгезионную способность, высокое содержание серы. Поэтому они не могут быть использованы в производстве электродной продукции без дополнительной обработки, приводящей к изменению их химического состава и свойств. Лучшими следует считать связующие вещества, которые имеют коксовое число по Конрадсону 40—50% и температуру размягчения 80—90 °С по К и Ш. Такие свойства связующих веществ обусловливаются химическим составом, т. е. оптимальным соотношением в них различного класса соединений и прежде всего асфальтенов, смол, высококонденсированных ароматических углеводородов, карбенов и карбоидов. Особо важное значение придается группе тяжелых ароматических углеводородов, которая способствует протеканию при обжиге изделий реакций конденсации. [c.75]

    Периодический способ имеет следующие недостатки. В кубе-окислителе периодического действия сырье длительное время (до 70 ч) находится в зоне реакции при высоких температурах, в результате чего возникают более глубокие изменения в составе битума и ухудшение его свойств. Возможны местные перегревы, приводящие к образованию карбенов и карбоидов и ухудшающие реологические свойства битума. Периодическим процессом окисления сырья в битумы управлять трудно. В зависимости от природы сырья существует оптимальный режим повышения температуры размягчения (понижения пенетрации либо повышения вязкости) во времени. Для каждого сырья существуют оптимальные температура процесса окисления и расход воздуха. Причем не всегда требуется стабилизация скорости подачи воздуха. Так, вначале необходимо постепенное повышение, затем в каком-то интервале температуры размягчения битума — стабилизация расхода воздуха, а затем при приближении к завершению процесса — некоторое понижение. Характер изменения скорости подачи воздуха зависит от природы сырья. Температура процесса меняется в зависимости от подачи воздуха и теплового эффекта реакции. Последний является функцией природы сырья и температуры процесса. Следовательно, съем тепла реакции необходим по определенной программе, различной для разных сырья и глубины окисления, меняющейся во времени с углублением процесса. [c.284]


    Таким образом, если многие виды загустителей — мыла, твердые углеводороды, некоторые высокомолекулярные полимерные, пленкообразующие вещества удерживают на своих ас-социатах значительное количество маслорастворимых ингибиторов коррозии и для ингибирования системы требуется их избыток, то в более полярные растворы окисленных углеводородов и битумов могут быть введены меньшие их количества за счет образования синергических смесей. Естественно, что химический состав битумов имеет огромное значение чем больше в них ПАВ, чем пластичнее и эластичнее структура битума, чем меньше карбенов, карбоидов, углеродистых и прочих дисперсий, тем лучше свойства битумов, используемых в качестве загустителей ПИНС. [c.150]

    В разное время разными авторами отмечались и некоторые другие различия в свойствах промежуточных частиц, возникающих при разложении АДС в присутствии катализатора или без него Д,12,20,31,39,62-65/. В частности.до недавнего времени считалось Д. 14/, что модифицированный катализатором карбен инертен по отношению к С-Н-связ.чм насыщенных или ароматических углеводородов. Сейчас известно немало примеров межмолекулярного внедрения каталитически генерированного карбена в эти связи Дб,65-7 7. Различия в реакционной способ ности свободных карбенов и-карбенов, модифицированных катализатором, носят, по-видимому, хотя и совершенно отчетливый, но не принципиальный характер. [c.91]

    В широком ряду реакций, из которых некоторые приведены ниже, в качестве неустойчивых промежуточных продуктов реакции, ясно, однако, констатируемых, фигурируют частицы СНг и их всевозможные производные типа HR, R2. RR, где R — углеводородные радикалы, их функциональные замеш,енные, атомы галоида и т. д. Такие частицы с формально двухвалентным углеродом названы карбенами (Деринг). Простейший карбен — свободный метилен. Ни один карбен не полу-чен в устойчивом состоянии в виде вещества. Тем не менее по химическому поведению и физическим свойствам карбены ясно идентифицируются как промежуточные продукты реакции. [c.518]

    При регенерации масла серной кислотой происходит химическое взаимодействие кислоты с присутствующими в отработанном масле смолами, асфальтенами и другими примесями, ухудшающими его свойства. Смолы под действием кислоты уплотняются и переходят в асфальтены, основная часть которых вместе с сернистыми соединениями, твердыми включениями — карбенами и карбоидами — образует тяжелый вязкий осадок — кислый гудрон, удаляемый из масла. Некоторая часть продуктов взаимодействия кислоты с примесями растворяется в масле и удаляется при последующей обработке масла щелочью или адсорбентами. Для регенерации отработанных масел применяют 93—-96 %-ную серную кислоту плотностью 1,84. Очистку серной кислотой производят в два приема. Вначале масло, отстоявшееся от воды и механических примесей, обрабатывают небольшой порцией серной кислоты (0,5 % массы масла) для полной его 288 [c.288]

    В зависимости от этого состояния свойства таких карбенов будут различными. Так, в триплетном состоянии карбены проявляют некоторые свойства бирадикалов, а в синглетном онн подобны, с одной стороны, ионам карбоння, а с другой — ЯВЛЯЮТСЯ аналогами карбонионов. Однако основное состояние для метиленового радикала — бирадикальное триплетное. [c.30]

    Двухзарядные частицы некоторых других элементов IV группы, такие, как 1р2 или гЗпСЬ, проявляют свойства, близкие к свойствам карбенов. [c.306]

    Как правило, методики синтезов были уточнены и дополнены новымн примерами, проверены физические константы, в приводимых таблицах содержится больше данных. Литература дополнена новейшим материалом. Некоторые разделы, как, например, по масс-спектроскопии и реакции Виттига, написаны вновь. Значительно переработаны и дополнены разделы по ИК- и ЯМР-спектроскопии, нуклеофильности реагентов, а также разделы, описывающие ароматические свойства соединений, реакции енаминов, карбенов. [c.10]

    Серная кнслота протонирует даже очень слабые основания, например ароматические эфнры и некоторые ароматические углеводороды. Она способствует образованию ионов карбения либо путем дегидратации гидроксильных соединений, либо путем присоединения протона к двойной связи. Всеми этими свойствами в большей степени обладают суперкнслоты . [c.204]

    В водном растворе разряд карбокснлатов возможен лишь на анодах из гладкой платины и иридия или из углерода. Если структура кислоты такова, что может образоваться продукт сочетания, то для получения его с оптимальным выходом следует выбрать анод нз платины, иридия или, в некоторых случаях, из стеклоуглерода. На аноде из графита или пористого уь-зерода многие карбоксилаты дают продукты, источником которых почти исключительно служит ион карбения [19—23]. Однако описаны и исключения нз этого правила [24, 25]. В неводиых растворителях роль материала электрода пе так велика, хотя и в этих случаях использование угольных анодов способствует механизму с участием иона карбения, а использование платины —радикальному механизму [19, 23]. Диоксид свинца, по-видимому, ведет себя при окислении ацетата аналогично углероду [26], но необходимы дополнительные эксперименты для того, чтобы выявить, насколько общим является это поведение [27]. Реакция Кольбе может Сыть проведена на стеклоуглероде и спеченном угле [26, 28] Для пиролитического углерода распределение продуктов зависит от тою, проводится ли реакция на гранях илн плоскостях электрода [28] это подтверждает, что раА.1ичия связаны с адсорбционными свойствами. [c.426]


    Неопределенность этого метода генерации карбенов состоит в том, что некоторые продукты могут образоваться при непосредственных реакциях возбужденного диазосоединения, а не через карбен. Такую возможность трудно исключить, но в некоторых случаях можно это контролировать тщательным изучением квантового выхода реакции или сравнением свойств того же карбена, полученного иным путем. Например, карбен (59), генерированный из соединений (60) и (61), обладает одинаковой селективностью в конкурентных реакциях с двумя алкенами [51]. Это небольшое осложнение не возникает при получении карбенов термолизом диазосоединений, однако при этом наблюдаются три общие побочные реакции диазосоединения в основном состоянии, которые мешают генерации карбена. Диазосоединения могут взаимодействовать с генерированным карбеном с образованием азинов (62), кроме того, они также легко протонируются с образованием карбениевого иона [схема (40)]. Наконец, диазосоединения могут присоединяться как 1,3-диполи к любым присутствующим в смеси алкенам [c.590]

    Он привел доводы в пользу того, что синглетные карбены присоединяются путем синхронного образования обоих новых о-связей, давая только (74) и сохраняя таким образом стереохимию исходного алкена, в то время как триплетные карбены присоединяются по радикальному двухстадийному механизму с образованием в первую очередь бнрадикала (75), в котором может происходить вращение вокруг связи до инверсии спина и замыкания кольца, что приводит к обоим диастереомерам (74) и (76). Несмотря на широкое обсуждение справедливости теоретических предпосылок, правило Скелла исключительно успешно объясняет многие экспериментальные данные, полученные для этих реакций присоединения. Однако при использовании правила следует соблюдать определенную осторожность, так как в его основе лежат некоторые предположения об относительных скоростях стадий схемы (48), которые могут соблюдаться не во всех случаях [38]. Таким образом, прежде чем однозначно приписать определенную реакционную способность одному из спиновых состояний карбена, следует выяснить свойства обоих состояний. В ряде случаев, когда это требование было точно соблюдено, например в случае метилена, бисметоксикарбонилкарбена, флуоренилидена и др., результаты всегда соответствовали предсказаниям Скелла. Расчет поверхности потенциальной энергии присоединения синглетного метилена к этилену [40, 70] подтверждает синхронность реакции и свидетельствует, что она осуществляется по принципу наименьшего движения через разрешенный орбитальной симметрией подход (77), при котором вакантная р-орбиталь (НСМО) карбена взаимодействует с занятой я-молекулярной орбиталью алкена, причем карбен расположен так, чтобы перекрывание было максимальным, а пространственные взаимодействия минимальны. Более симметричный подход (78), когда занятая о-орбиталь карбена взаимодействует с я-системой, запрещен орбитальной симметрией и по расчету обладает более высокой энергией, чем (77). Расчеты (77) указывают на наличие я р-переноса заряда в переходном состоянии (79), что согласуется с экспериментально наблюдаемым ускорением присоединения большинства карбенов к алкенам, содержащим электронодонорные заместители, и свидетельствует об электрофильной атаке карбена. Многочисленные исследования относительной реакционной способности карбенов с целью выяснения влияния пространственных и электронных эффектов различных заместителей в алкенах и карбенах критически оценены Моссом [48], который показал недавно, что селективность многих карбенов типа СХУ при реакции с олефинами коррелирует как с резонансными, так и с индуктивными параметрами X и V [71]. Большинство карбенов, в том числе сильно я-стабилизованный Ср2 (49), ведут себя как типичные электрофилы, однако ароматические карбены, такие как (80) и (47), проявляют нуклеофильные свойства, например (80) присоединяется через переходное состояние, поляризованное противоположно (79) [72]. Полагают, что это обусловлено [c.596]

    Крекинг-остаток обычно используют как котельное топливо и частично на некоторых заводах для производства битума. Битумы, полученные окислением крекинг-остатка, стареют быстрее, чем полученные окислением гудронов, та как в крекинг-остатках содержатся значительные количества карбенов и карбоидов, нарушающих однородность и ухудшающих цементирующие свойства битума. В связи с этим, а также для повышения эксплуатацианных свойств битумов и сокращения времени на окисление на нефтеперерабатывающих заводах в зависимости от конкретных условий применяют различные варианты использования крекинг-остатков [c.16]

    При фотолизе и термолизе предшественников карбенов в газовой фазе образуются кинетически независимые, так называемые свободные карбены. Карбены, полученные в растворе и особенно в присутствии металлов, оказываются более или менее связанными с растворителем и (или) металлом в комплекс, что повышает время жизни, эффективный объем и избирательность частицы, влияет на ее электрофильные свойства. В некоторых случаях, по-видимому, карбен в виде такого комплекса входит и в переходное состояние реакции с непредельными соединениями. На это указывает, в частности, способность хи-ральных катализаторов вызывать преимущественное образование одного из двух возможных экантиомеров продукта реакции — свойство, очень ценное для направленного органического синтеза. Комплексы или сольваты карбенов, образующие с непредельными соединениями качественно те же продукты, что н свободные карбены, но несколько отличающиеся от последних по своей реакционной способности, называются связанными карбенами или карбеноидами. . Малая устойчивость этих [c.11]

    После работы Деринга и Гофмана, которую можно рассматривать как первый пример синтетического использования гало-карбенов, появилось большое количество исследований на эту же тему. В настоящее время химия карбенов бурно развивается как в теоретическом, так и в чисто синтетическом направлении. Карбеновым методом удалось получить самые разнообразные производные циклопропана, которые трудно или невозможно получить другими методами. Реакцией карбенов с олефинами и ацетиленами синтезированы многие напряженные соединения, исследование свойств которых имеет значение для развития теоретической органической химии. Эта реакция позволила синтезировать некоторые природные соединения или их аналоги, в том числе вещества, обладающие биологической активностью. Благодаря разработке карбенового метода синтеза стали доступными алкил- и алкенилциклопропаны, которые могут найти применение как мономеры для получения новых синтетических полимерных материалов или использоваться как специальные виды топлива ввиду высокого теплосодержания трехчленного кольца. [c.10]


Смотреть страницы где упоминается термин О некоторых свойствах карбенов: [c.179]    [c.264]    [c.178]    [c.373]    [c.72]    [c.122]   
Смотреть главы в:

Физико-химические основы получения, переработки и применения эластомеров -> О некоторых свойствах карбенов




ПОИСК







© 2025 chem21.info Реклама на сайте