Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атомные и молекулярные кристаллы

    Твердые растворы замещения образуются в том случае, если кристаллические решетки компонентов однотипны и размеры частиц компонентов близки. Необходимым условием образования твердых растворов является также и известная близость химических свойств веществ (одинаковый тип химической связи). Так, в кристалле КС1 ионы хлора могут быть постепенно замещены ионами брома, т. е. можно осуществить практически непрерывный переход вещества от состава КС1 к составу КВг без заметного изменения устойчивости кристаллической решетки. Свойства образующихся твердых растворов непрерывно меняются от КС1 к КВг. Ниже приведены примеры ионных, атомных, молекулярных и металлических твердых растворов замещения. [c.134]


    Наряду с геометрической характеристикой кристаллических решеток важное значение имеет классификация их структуры по химическому составу, соотношению компонентов в химической формуле —соединения типа МХ(1—1), М2Х(1—1), МХг(2—1), МХз(3—1), взаимной координации частиц (цепные и сложные координационные решетки). Особенно широкое распространение получил классификация по виду химической связи между атомно-молекулярными частицами кристалла. По этому признаку кристаллические решетки подразделяются на ионные, ковалентные, молекулярные , металлические и промежуточные между ними. [c.142]

    Энергия кристаллической решетки Е для атомных и молекулярных кристаллов может быть определена по уравнению [c.142]

    В зависимости от природы частиц, из которых построена кристаллическая решетка, и природы сил взаимодействия между ними, различают ионные, атомные, металлические и молекулярные кристаллы (рис. 1.10). [c.36]

    Молекулярные кристаллы. Лед. Когда частицами, образующими кристалл, являются целые молекулы, то они связываются в кристалле межмолекулярными силами ( 27). Так как силы эти во много раз слабее, чем силы, связывающие частицы в ионных, атомных или металлических кристаллах, то молекулярные кристаллы обладают малой твердостью, низкими температурами плавления, значительной летучестью. [c.139]

    Межмолекулярное взаимодействие в молекулярных кристаллах значительно слабее, чем в ионных и атомных кристаллах. Поэтому, как указывалось выше (с. 38), молекулярные кристаллы плавятся при низких температурах и имеют высокую летучесть. Примером веществ с молекулярной решеткой являются иод, сахароза, камфара и т. д. [c.42]

    Молекулярные кристаллы, построенные из статистически перемешанных в их структуре разных молекул, представляют собой молекулярные твердые растворы, которые заметно отличаются от атомных твердых растворов (см. гл. IV). [c.21]

    Зонная структура энергетического спектра, как мы видели выше, отражает ту особенность природы атомных кристаллов (металлов, полупроводников и изоляторов), что в них существует непрерывный трехмерный каркас межатомных связей и свойственное кристаллическому веществу периодическое поле. Электронный энергетический спектр молекулярных кристаллов, построенных из отдельных нульмерных молекул, соединенных ван-дер-ваальсовскими связями, не имеет обычной зонной структуры, а представляет собой совокупность до некоторой степени искаженных в результате слабого обменного взаимодействия молекул молекулярных энергетических спектров, состоящих из дискретных энергетических уровней. Кристаллы цепочечной, сетчатой и каркасной структуры, в том числе разнообразные соединения включения, мы рассматриваем как разновидности молекулярных кристаллов, построенных, соответственно, из одно-, двух- и трехмерных молекул или из их комбинаций. Их энергетические спект- [c.118]


    Определяющее влияние на формирование структуры твердого вещества оказывает природа связи. Вместе с тем здесь действуют и- другие факторы природа структурных единиц — их состав, строение, формы, размеры — и такой важный фактор, как энергетическое состояние вещества. Ионные, атомные, молекулярные и макромолекулярные структурные единицы образуют соответствующие кристаллы или же тела непериодического строения. Большему или меньшему значению свободной энергии отвечают модификации вещества различной плотности, в том числе огромное число метастабильных модификаций. [c.155]

    По значениям энергии кристаллической решетки можно судить о типе химической связи в соединении и ее энергии. Как е идно из данных табл. 25, наибольшую энергию кристаллической решетки имеют ионные и атомно-ковалентные кристаллы, наименьшую — кристаллы с молекулярной решеткой. Металлы по величине энергии решетки занимают промежуточное положение. [c.201]

    Электроны каких атомных орбиталей вносят больший вклад в градиент неоднородного электрического поля на ядре в молекулярном кристалле согласно теории Таунса и Дейли  [c.132]

    В общетеоретическую часть включены вопросы строения вещества, энергетики и кинетики химических реакций, растворов, окислительно-восстановительных и электрохимических процессов, а также обзор свойств элементов и их соединений. Рассмотрено строение вещества на атомном, молекулярном и надмолекулярном уровне, а также строение кристаллов. Изложены общие закономерности протекания химических реакций, в том числе основы химической термодинамики и химической кинетики. Большое внимание уделено тепловым эффектам и направленности химических реакций, химическому, фазовому и адсорбционному равновесию. Изложены кинетика гомогенных и гетерогенных реакций, цепных и фотохимических реакций и основы катализа. Освещены дисперсные системы, коллоидные и истинные растворы, большое внимание уделено растворам электролитов. Рассмотрены термодинамика и кинетика окислительно-восстановительных и электрохимических процессов, коррозия и защита металлов. Выполнен обзор свойств химических элементов и их простых соединений, рассмотрены строение и свойства комплексных и органических соединений. [c.3]

    Элементы, которые образуют простые вещества о атомными решетками, расположены в правой части таблицы Менделеева, между элементами, образующими молекулярные кристаллы, и металлами, т. е. эти элементы являются как бы промежуточными между металлами и неметаллами. К ним относятся В, С, 51, Се, Аз, 8Ь, В1, 5е, Те, Ро. Неудивительно, что в их числе простые вещества полупроводники. [c.35]

    Толчком к созданию атомно-молекулярной теории явилось порожденное требованиями мануфактурного производства изучение жидкостей и газов. С одной стороны, развитие гидростатики и гидродинамики (физика), а с другой,— изучение процессов восстановления металлов и горение топлива (химия) дали конкретные представления о строении веществ из атомов и молекул или корпускул. Поиски минерального сырья привели к развитию геологии и минералогии, что способствовало формированию одной из первых наук о кристаллах — геометрической кристаллографии. [c.183]

    Дефектом по Шоттки называется пустой узел в кристаллической решетке. Он может иметь место в ионных, атомных и молекулярных кристаллах. Этот дефект часто называют вакансией. [c.89]

    Усовершенствование техники рентгеноструктурных исследований привело к значительному повышению точности измерения интенсивности дифракционных лучей. Одновременно разработка методов эффективного учета различных побочных факторов, влияющих на интенсивность, позволила существенно понизить потери в точности при переходе от интенсивности к структурным амплитудам, а следовательно, адекватно снизить уровень погрешности в определении электронной"" плотности, координат атомов и констант колебаний атомов. Это дает возможность направить рентгеноструктурный анализ на решение ряда новых физико-химических задач, лежащих за пределами статической атомной структуры кристалла. Это прежде всего следующие задачи а) анализ тепловых колебаний атомов в кристаллах б) анализ деталей распределения электронной плотности по атомам и между атомами в кристаллах в) использование структурных данных для оценки параметров, входящих в волновые функции и орбитальные энергии молекулярных систем. [c.180]

    Энергию атомных и молекулярных кристаллов можно определить экспериментально на основании данных о теплоте возгонки (сублимации) кристалла, т. е. данных о величине АН = Qp процесса [А] = [c.313]

    Твердое состояние в отличие от других агрегатных состояний не является равновесным. Из-за медленного протекания атомно-молекулярных процессов в твердом теле сохраняются фазы, возникшие лри его образовании, и дефекты, которые называются наследственными. К ним принадлежат прежде всего границы зерен. При кристаллизации металлов рост отдельных кристаллов происходит вокруг определенных центров — зародышей. При росте таких зародышей они сталкиваются друг с другом и образуют границы зерен. На таких границах должны быть как-то согласованы различные направления кристаллизации. Границы зерен имеют поэтому менее упорядоченное строение и более аморфны, чем середина зер-на. Они поэтому лучше растворяют примеси. [c.192]


    Химические свойства простых веществ. При рассмотрении физических свойств простых веществ подчеркивалось, что они в основном присущи макроскопическим количествам вещества (особенно в конденсированном состоянии). Что же касается химических свойств, то они главным образом определяются свойствами атомов или молекул, поскольку химическое взаимодействие всегда протекает на атомном или молекулярном уровне. Однако реально наблюдаемая химическая активность твердых простых веществ в заметной мере зависит, например, от величины поверхности соприкосновения, ее состояния, структуры кристалла и т.п., т.е. опять-таки от макроскопических характеристик. Так, мелкодисперсный цинк (цинковая пыль) значительно энергичнее взаимодействует с кислотами, чем гранулированный. Например, цинковая пыль восстанавливает азотную кислоту до аммиака, а гранулированный цинк — только до низших оксидов азота. Хорошо известна также способность многих металлов (А1, Ре, Т1, Сг и др.) к пассивации в агрессивных окисляющих средах, хотя сами эти металлы достаточно активны. Кроме того, различные модификации одного и того же простого вещества могут заметно различаться по химической активности (например, белый и красный фосфор). Таким образом, химические свойства простых веществ представляют собой единство атомной, молекулярной и кристаллической форм химической организации со всеми характерными для них особенностями. [c.249]

    Если газ, образующийся в результате возгонки кристалла, состоит из тех же частиц, что и сам кристалл, то энергия кристаллической решетки равна энергии возгонки и ее можно определить экспериментально. Это относится к атомным, металлическим и молекулярным кристаллам. При испарении ионных кристаллов в газовую фазу переходят молекулы или атомы, вследствие чего определить экспериментально энергию кристаллической решетки таких кристаллов нельзя. В этом случае расчеты проводят на основании закона Гесса (гл. 7), исходя из экспериментальных данных по энергиям других процессов. Наибольшая энергия кристаллической решетки характерна для ионных и атомных кристаллов, меньшая — для металлических и еще меньшая — для молекулярных кристаллов  [c.80]

    Полученные результаты могут быть использованы при разработке теории управления реакционной способностью молекулярных твердых веществ, теории структурных превращений и прогнозирования полиморфизма в кристаллах с водородными связями, для оптимизации атом-атомных потенциалов в них, для понимания роли водородных связей в твердофазных превращениях молекулярных кристаллов. Результаты могут найти применение, в частности, при разработке систем для записи информации на основе молекулярных кристаллов, при модифицировании свойств материалов и лекарственных препаратов без изменения их химического состава. [c.49]

    Если газ, образующийся в результате возгонки, состоит из тех же частиц, что и сам кристалл, то энергия кристаллической решетки совпадает со значением энергии возгонки (сублима 1,ии). Это относится к молекулярным, атомно-ковалентным и атомно-металлическим кристаллам. Таким образом, в этом случае энергию кристаллической решетки можно определить экспериментально. [c.166]

    Наиболее отвечающая современным представлениям модель атомно-молекулярной структуры карбоиизованных веществ, к которым относятся и нефтяные коксы, предложена в работах [73, 74]. По этой модели карбонизоваггные вещества состоят из конденсированных ароматических колец, упорядоченных в двумерной плоскости и связанных в пространственный полимер боковыми углеводородными цепочками (неупорядоченная часть). Коксы отличаются друг от друга соотношением упорядоченной части углерода к неупорядоченной, количеством и прочностью связей в боковых цепочках, что в конечном счете обусловливает их химическую активность при высокотемпературном нагреве и графитации. Двумерные плоскости, уложенные в пачки параллельных слоев, образуют макрочастицы (кристаллиты) определенной структуры. Таким образом, кристаллит представляет собой структурную единицу, состоящую из 2—5 ароматических сеток с боковыми функциональными группами. [c.196]

    Радиусы атомов благородных газов Не, Ке, Аг, Кг и Хе равны соответственно 122, 160, 191, 201 и 220 пм. Приведенные значения получены из межатомных расстояний в кристаллах данных веществ, которые существуют при низких температурах. Для атомов этих элементов также наблюдается рост г, с увеличением порядкового номера. Радиусы атомов благородных газов значительно больше радиусов атомов неметаллов соответствующих периодов, поскольку в кристаллах благородных газов межатомное взаимодействие очень слабое (силы Ван-дер-Ваальса), а для молекул других неметаллов характерна прочная ковалентная связь. Можно считать, что атомные радиусы благородных газов - это радиусы валентно не связанных атомов, т. е. ван-дер-ваальСовы радиусы (которые находят из межатомных расстояний в молекулярных кристаллах). [c.51]

    Значение равновесного расстояния Го близко к сумме вандер-ваальсовых радиусов соответствующих атомов, находимых обычно из свойств соответствующих атомных или молекулярных кристаллов  [c.170]

    Следует отметить, что влияние электронной конфигурации атомов в молекуле на межмолекулярное взаимодействие не было выявлено при исследовании методом атом-атомных потенциалов межмолекулярных взаимодействий в молекулярных кристаллах углеводородов или в реальных газах, В этих случаях большое значение лмеет потенциал фн... н, поскольку на периферии молекул углеводородов расположены атомы водорода. При адсорбции же малых доз углеводородов на ГТС взаимодействием адсорбат — адсорбат можно пренебречь, так что потенциал фн...н в расчет К не входит. [c.175]

    Для пояснения особенностей топохимических реакций рассмотрим реакции разложения с образованием твердой фазы, например разложение кристаллогидратов, карбонатов, гидроксидов и оксидов. Как правило, в большинстве опытов использованы порошкообразные исходные вещества, где диффузионные торможения исключаются и легко могут быть сведены к минимуму. Таким образом, лимитирующей стадией в этих процессах является химическая стадия в широком понимании не только разрушение связей в исходном кристалле и образование новых в продуктах реакции, но и оформление твердого продукта в кристаллохимически определенную фазу. Не только первый акт, но и кристаллохимическое оформление продукта при топохимических процессах происходят в непосредственной близости к поверхности раздела исходный кристалл — продукт реакции и охватывают всего несколько атомных (молекулярных) слоев. [c.166]

    Твердое тело можно рассматривать как совокупность большого числа атомов, молекул или ионов ( 10 моль" ), связанных друг с другом обычными силами межатомного взаимодействия (см. гл. 4). Свойства твердого тела являются коллективными свойсгвами всей совокупности составляюишх его частиц. Твердое тело является в некотором роде большой молекулой , и подходы к описанию его свойств принципиально не отличаются от рассмотренных )з предыдущих главах для молекул. Однако большое число атомов, образующих твердое тело, делает невозможным прямое перенесение на него методов количественного расчета электронных и пространственных характеристик молекул и требует учета упорядоченности структуры твердого тела. В данной главе проиллюстрируем основную схему описания электронного строения твердых тел на примере атомных и молекулярных кристаллов, включающих бесконечное число идентичных атомов или молекул, однородно упакованных в регулярные ряды и плоскости, заполняющие весь объем кристалла. В отличие от такого идеального кристалла реальные кристаллические тела содержат дефекты кристаллической решетки, нарушающие регулярность. Крайним случаем нарушения регулярности является совсем случайное, хаотическое расположение атомов или молекул в твердом теле, какое наблюдается в аморфных твердых телах, как и в жидкостях. В зависимости от степени регулярности расположения атомов или молекул в твердом теле используют и различные модели для описания их строения и свойств. [c.523]

    Шестой период развития химии — современный. Этот период характеризуется широким использованием квантовой (волновой) механики для иитерпретаци н все чаще для расчета химических параметров веществ и систем веществ доведением исследования химических процессов (химической формы движения материи) до их перехода в предбиологические (матричные) и биологические разработкой теорий химической эволюции утверждаются факт отсутствия химических индивидов в чистом виде и необходимость описания веществ как составных частей систем веществ признается неправомерность игнорирования качественных различий мик-ро- и макроформ вещества, характерного для классического атомно-молекулярного учения (в качестве примера можно назвать пирофорность порошков металлов и некоторых других веществ (сахара, муки), различную растворимость крупных и мелких кристаллов и т. д.). [c.27]

    Кабрера (1949 г.) и другие предложили подразделять идеализированные поверхности на три типа сингулярные вициналь-ные и диффузионные, или несингулярные [4]. Сингулярные поверхности раздела фаз отличаются от диффузионных количеством атомных (молекулярных) слоев, параллельных поверхности кристалла, в которые осуществляется переход от кристалла к пару. Если поверхность сингулярна, переход осуществляется в одном (незначительно утолщенном — рис. 183, а) слое, если несингулярна — в нескольких слоях. Вицинальные поверхности (рис. 183, б) имеют ступенчатую структуру, в которой довольно широкие участки плоскости с малыми индексами отдалены друг от друга моноатомными (мономолекулярными) подъемами, ступеньками. [c.444]

    Важность применения понятия фазы к твердому состоянию заключается в том, что, как правило (за исключением молекулярных кристаллов), носителем всех свойств твердого вещества является фаза. В жидком и газообразном состояниях, а также в молекулярных кристаллах носитель химических свойств — молекула, хотя представление о фазе к ним приложимо. В связи с этим твердая фаза представляет собой высшую ступень химической организации вещества. Рассмотрим взаимосвязь и характерные особенности различных форм организации вещества на примерах иода, кремния и диоксида кремния (рис. 86). Изолированный атом не является конкретным носителем химических свойств вещества в обычных условиях, а у SiOa (сложное вещество) организация на атомном уровне отсутствует вообще. Для иода первичным носителем химических свойств выступает молекула. При образовании молекулярного кристалла Ь, в котором молекулы связаны слабыми ван-дер-ваальсовыми силами, возникающая твердая фаза не будет специфическим носителем свойств иода, так как последние целиком определяются [c.185]

    Химические соединения, в которых осуществляется ионная связь, называются ионными. Все ионные соединения в твердом состоянии являются кристаллическими веществами. В зависимости от природы химической связи в кристалле различают несколько типов кристаллических решеток ионные, атомные, молекулярные, металлические. На рис. 3.3 ириведены примеры ионных решеток в их узлах находятся положительно и отрицательно заряженные ионы. [c.54]


Смотреть страницы где упоминается термин Атомные и молекулярные кристаллы: [c.624]    [c.335]    [c.133]    [c.18]    [c.119]    [c.107]    [c.525]    [c.525]    [c.146]    [c.80]   
Смотреть главы в:

Теоретические основы неорганической химии -> Атомные и молекулярные кристаллы




ПОИСК





Смотрите так же термины и статьи:

Блоховские суммы атомных функции. Сравнение циклических молекулярных моделей кристаллов

Кристалл молекулярные

Кристаллы атомные

Симметризация атомного базиса в расчетах молекул и молекулярных моделей кристаллов



© 2025 chem21.info Реклама на сайте