Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение хлора и брома в водных растворах

    Все реально существующие оксиды хлора, брома и иода являются окислителями в гетерогенных реакциях. Оксиды галогенов в водном растворе вряд ли принимают непосредственное участие в окисли-тельно-восстановительных реакциях. Вначале они взаимодействуют с водой с образованием соответствующих кислот, которые затем и выполняют функции окислителя. Оксид I2O5 применяют для обнаружения и количественного определения монооксида углерода в воздухе  [c.340]


    Дуговой разряд. Приближенное определение брома и хлора в водном растворе предложено выполнять на стилоскопе СЛ-1. Спектр возбуждают при небольшом межэлектродном промежутке 0,3—0,5 мм, вводя анализируемый раствор в пламя дуги переменного тока при помош и фульгуратора. По мере увеличения концентрации раствора степень сложности возбуждаемого спектра растет, но 10 % брома определяют по единственной появляющейся линии 478,55 нм. Анализ длится 1—2 мин. [116]. [c.149]

    Обычно ред-окс-индикаторами служат сложные органические соединения. Как пример вещества, меняющего окраску при окислении и восстановлении, может быть указан бензидин НоН——МНд. При действии окислителей он окисляется, интенсивно окрашивая раствор в синий цвет в слабощелочной, нейтральной и очень слабокислой (рН = 6) средах и в желтый цвет в сильнокислой среде. Бензидин окисляется хлором, бромом, хроматами, гексацианоферратами и т. д. Окисление бензи-дина возможно только при определенном окислительном потенциале. Так, водные растворы иода вызывают синюю окраску бензидина, растворы кода, содержащие иодид-ионы, не реагируют с бензидином. Присутствие иодид-ионов настолько снижает окислительный потенциал системы [c.187]

    Соединение X в определенных условиях способно присоединять бром, бромоводород и водород, однако не реагирует с озоном и с водным раствором перманганата калия при 25 °С. При действии хлора на свету вещество X дает только одно монохлорпроизводное. Определите простейшее вещество X, которое имеет перечисленные выше химические свойства. Напишите уравнения реакций. [c.292]

    Приготовление индикатора. Полоски фильтровальной бумаги пропитывают смесью 5%-ного раствора иодистого калия и 0,2%-ного водного раствора крахмала с последующим высушиванием на воздухе. Цвет приготовленных полосок бумаги должен быть белым, При концентрации хлора 0,00143 мг л окраска появляется через Ю.лмн. Бром, окислы азота и другие окислители мешают определению. [c.131]

    Свободные бром или иод можно фотометрировать в водных растворах и особенно хорошо в органических растворителях. Определению хлора и хлорида мешают ионы иодида и бромида, поэтому их предварительно удаляют различными методами. [c.371]

    Селективное определение низких содержаний хлора в присутствии аммиака и некоторых других газов возможно после превращения его в 4-хлор-2,6-диметилфенол по реакции с диметилфенолом в водном растворе [222]. Для этого воздух, содержащий следовые количества хлора, аспирируют со скоростью 0,73 л/мин в течение 10 мин через два абсорбера, каждый из которых содержит 100 мл свободной от хлора воды 15 мг 2,6-диметилфенола 0,36 мг 4-бром-2,6-диметилфенола и 3 капли концентрированной серной кислоты (около 0,05 мл). После отбора пробы воздуха полученные в абсорберах растворы объединяют, экстрагируют замещенные фенолы гексаном и анализируют 1—2 мкл полученного экстракта на хроматографе с ПИД. [c.352]


    Определение хлора и брома в водных растворах [c.165]

    Хорошим окислителем для веществ с малым содержанием иода является хлор в растворе ацетата натрия в ледяной уксусной кислоте. Раствор ацетата натрия насыщают хлором, получаемым из перманганата калия и соляной кислоты. Для определения содержания хлора к 0,1 мл приготовленного раствора прибавляют иодид калия и титруют 0,02 н. раствором тиосульфата натрия. Исходя из результатов титрования, применяют такое количество окис тительного раствора, которое эквивалентно количеству применявшегося в предыдущем определении брома. Профильтрованный раствор после разложения исследуемого вещества прибавляют по каплям к окислительной смеси, как описано выше, приливают 3 мл насыщенного водного раствора ацетата натрия и 3—4 капли муравьиной кислоты и при взбалтывании по каплям насыщенный раствор бромида калия. В заключение прибавляют иодид калия и серную кислоту и титруют, как обычно. При расчете поправку вводить не надо. [c.157]

    При действии окислителей он окисляется, интенсивно окрашивая раствор в синий цвет в слабощелочной, нейтральной и очень слабокислой (pH = 6) средах и в желтый цвет в сильнокислой среде. Бензидин окисляется хлором, бромом, хроматами, гексацианоферратами и т. д. Окисление бензидина возможно только при определенном окислительном потенциале. Так, водные растворы иода вызывают синюю окраску бензидина, растворы иода, содержащие иодид-ионы, не реагируют с бензидином. Присутствие иодид-ионов настолько снижает окислительный потенциал системы [c.187]

    Газохроматографический метод определения хлора и брома в водных растворах, (Н Ф толуол или н-гептан на тефлоне, т-ра —78°,) [c.7]

    Некоторые авторы определяли относительно большие количества урана экстракционно-фотометрическим методом с применением 8-оксихинолина и хлороформа [5, 103—107]. Оптимальное значение рН для экстракции урана находится в пределах 6—8. Большинство металлов (в том числе Fe, Bi, Al) в присутствии комплексона III остаются в водном растворе. Поглощение окрашенного в желтый цвет экстракта измеряют при X 400 нм. Подобно определениям с 8-оксихинолином, определяют уран с хлор- и бром-8-оксихинолинами [104]. [c.423]

    ОПРЕДЕЛЕНИЕ ХЛОРА И БРОМА В ВОДНЫХ РАСТВОРАХ [c.199]

    Мешающие вещества. Определению брома мешают окислители, в том числе хлор. Кроме того, розанилин слабо окрашен и мешает собственной окраской. Поэтому лучше применять экстракционно-фотометрический вариант, позволяющий отделить броми-рованный продукт от реагента. Если применяют водно-органиче-ские растворы, то определение проводят в среде 3—7 н. серной кислоты. При такой кислотности уменьшается интенсивность окраски реактива. [c.326]

    В отличие от самого фенантрена его 9-хлор- и 9-бром-про-изводные дают с серной кислотой при 100° [822] 65—75%-ный выход одной кпслоты, а именно 3-(или 6-)сульфокислоты. Последнее доказывается восстановлением ее посредством цинка и ам-литака в феиантрен-З-сульфокислоту. Бромсульфокислота, известная под названием ЫО-бромфенантрен-З- (или 6-) сульфокислоты, подробно исследована благодаря любопытным свойствам ее водных растворов. Разбавленные растворы ведут себя, как растворы обычных электролитов, тогда как в более концентрированных растворах обнаруживаются коллоидные или анизатронные свойства, зависящие от концентрации и температуры. Переход от коллоидного состояния в жидко-кристаллические происходит в растворе данной концентрации при определенной температуре [823]. Действие света на водный раствор кислоты [824] приводит к изменению вязкости, объясняемому образованием нового соединения, строение которого неизвестно. [c.126]

    Стандартный редокс-потенциал системы бром —бромид (-Ы,07 В) меньше, чем у системы хлор —хлорид (-Ы,40 В), поэтому бром можно вытеснить хлором из раствора, содержащегс. бромид-ионы. Окисление брома до гипобромит- или бромат-ионов не требует использования очень сильных окислителей, поэтому для определения бромид-ионов можно применять окислительно-восстановительные реакции. Свободный бром летуч и может быть удален из водных растворов при кипячении. Это свойство брома позволяет отделить его, например, от хлорид-ионов. Для спектрофотометрического определения бромид- и бромат-ионов существует больше надежных реагентов, чем для определения хлорид ионов. [c.364]

    Очень удобно проводить определения по высоте пика, который образуется на хроматограмме осадком анализируемого элемента. Этот метод был предложен В. Б. Алесков-ским с сотрудниками [171—1731 для определения никеля и меди, а затем для определения микроколичеств иода, брома, хлора и роданида на бумаге, импрегнированной соответствующими растворителями. На бумаге (6x16 см) проводят карандашом линию погружения бумаги в растворитель на расстоянии 0,5 см от края бумаги и линию старта на расстоянии 2—2,5 см от того же края. На линии старта на равном расстоянии друг от друга наносят растворы определяемых ионов проградуированным стеклянным капилляром объемом 0,002— 0,003 мл. Полоску бумаги с нанесенными на нее пробами подсушивают на воздухе, а затем опускают до линии погружения в стакан емкостью 500 мл с 50 мл воды или водного раствора глицерина (глицерин придает подвижному )астворителю необходимую вязкость и гигроскопичность). Лолоску закрепляют в стакане вертикально (рис. 54)..Продвигаясь вверх по бумаге, растворитель захватывает непрореагировавшие количества определяемого иона, образующийся осадок образует след в виде правильного пика, высота которого при прочих равных условиях зависит от концентрации определяемого вещества и от количества осадителя. Через 30—45 мин после образования пиков хроматограмму высушивают на воздухе и измеряют линейкой высоту пиков. Из результатов 5—10 опытов находят сред- [c.214]


    М растворы трифенилгидроксида олова(ГУ) в бензоле или хлороформе применяют в активационном анализе для отделения Вг-ионов от ряда катионов и анионов, но они не являются специфичными экстрагентами. Из водных растворов, содержащих в 20 мл 0,5—1,0 мл конц. Н2304 или НКОз, количественно извлекаются и бром, и хлор, ио благоприятные ядерно-физические характеристики соответствующих изотопов допускают определение брома (а при не очень больших количествах последнего — и хлора) без дополнительного разделения [510]. [c.53]

    Бесцветное кристаллическое соединение I с т. пл. 186—187°С содержит азот, но не содержит галогенов и серы, не растворяется в воде и разбавленных кислотах, но растворяется в разбавленном растворе бикарбоната натрия. Его эквивалент нейтрализации равен 180 2. Это вещество не реагирует с бромом в четыреххлористом углероде, с разбавленным раствором перманганата калия, с ацетилхлоридом и фенилгидразином. При обработке в течение некоторого времени кипящей соляной кислотой после охлаждения реакционной смеси выделено соединение II, плавившееся при 120—12ГС и имевшее эквивалент нейтрализации 121 1. Фильтрат после выделения вещества II упаривают досуха, а остаток III очищают перекристаллизацией. Он содержит азот и хлор, довольно гигроскопичен, разлагается при попытке определения его температуры плавления и не растворяется в эфире. Из водного раствора этого вещества при прибавлении раствора нитрата серебра выпадает осадок. При обработке вещества III азотистой кислотой на холоду происходит энергичное выделение газа. При взаимодействии соединения III с беизолсульфохлоридом и раствором гидроксида натрия после подкисления полученного раствора выделен продукт IV с т. пл. 164— 165°С. [c.547]

    При проведении этих анализов следует использовать специальные де тали и детекторы, в том числе пити катарометра, сделанные из никеля 1446,448—450,453, 460], а также фторированные носители и стационарные фазы [4()0, 466]. Были разделены токсические газы, содержащие фосген [116, 419, 452, 467—469а]. Удалось провести определение ионов хлора и брома [470] в водных растворах после удаления, галогенводородов. Ион фтора удалось определить в виде фторсилана [471]. Было опубликовано сооб1цение об анализе чистоты HG1 [472]. [c.274]

    В чистом виде иод—твердое кристаллическое вешество с металлическим блеском. Удельный вес его 4,9. Запах иода напоминает запах хлора и брома, но он значительно слабее. Иод плохо растворим в воде 100 мл воды растворяют около 0,03 г иода. Растворимость иода значительно повышается в водном растворе иодистого калия или иодистого натрия. В спирте, бенвине, хлороформе и сероуглероде иод хорошо растворяется. При нагревании иод, не плавясь, переходит в парообразное состояние, образуя пары темнофиолетового цвета, которые при охлаждении снова переходят в твердый иод (сублимация, или возгонка). Таким путем иод очищают от нелетучих примесей. При определенных условиях иод mohiho расплавить (т. пл. 114° С), а жидкий иод можно нагреть до кипения (т. кип. 183° С). [c.183]

    При определении органических веществ в качестве титранта наиболее широко используют галогены, в частности бром. Рассмотрена возможность определения электрогенерированным хлором фталевой и ненасыщенных жирных кислот, метилтио-уранила, гидразида изоникотиновой кислоты, фенола, крезола, пирокатехина, резорцинола, гидрохинона, некоторых циклических р-дикетонов, кофеина и теобромина и др. [294]. Кулонометрическое титрование электрогенерированным бромом предложено также для аминов и енольных эфиров различной структуры, дифенацена и др. Титрование проводят в 50 %-ном водном растворе уксусной кислоты, 0,2 М по бромиду калия [659, 660]. Этот же титрант предложен для экспрессного опре-деления аминного азота после разложения органических соединений сплавлением с гидросульфатом калия [661]. При определении органических веществ электрогенерированным бромом [c.81]

    Если вместо хлорида натрия между металлическими пластинами поместить кристалл хлорида или бромида серебра, а к пластинам приложить напряжение, то мы обнаружим, что между пластинами начинает течь заметный ток. Этот ток значительно меньше, чем в случае расплавленного электролита или водного раствора электролита, но его вполне достаточно, чтобы отличить Ag l или AgBr от изоляторов, подобных твердому хлориду натрия. Хлорид и бромид серебра — твердые электролиты [7, 8]. В кристаллической решетке этих веществ ионы хлора или брома неподвижны, тогда как ионы серебра являются истинными носителями заряда. Из-за несовершенства кристалла некоторые ионы серебра находятся вне узлов кристаллической решетки (т. е. в междоузлиях-, щс Л), тогда как часть узлов решетки не занята ионами (эти свободные места называются ионными вакансиями, или дырками). Переход ионов серебра из междоузлий на вакансии и обратно делает возможным перенос заряда в кристалле. С ростом температуры проводимость твердых электролитов возрастает. Твердые электролиты используются в ионоселективных электродах (гл. 3) и в определенных типах топливных элементов (см, гл, 2). [c.25]

    ИОД В водном растворе до бесцветной йодноватой кислоты. Поэтому, если,, кроме иода, в растворе присутствует также бром, добавляя достаточное количество хлора, можно получить окраску, характерную для последнего. Количественное определение фтора можно осуществить осаждением, и взвешиванием его в виде фторида кальция СаГг- [c.764]

    Одним из наиболее опасных типов отходов, основным методом переработки которых служит сжигание, являются галогеноорганические отходы. Фтористые и бромистые отходы менее распространены, но их обрабатывают тем же способом, что и хлорсодержащие материалы. Хлорированные органические материалы могут содержать водную фазу или определенное количество воды, но в основном они представляют собой хлорированное органическое соединение или ряд таких соединений. Отходы с высоким содержанием хлора имеют низкую теплоту сгорания, так как хлор, аналогично брому и фтору, препятствует процессу горения, а малохлорированные органические соединения могут гореть без дополнительного топлива. Галогеноорганические отходы при обработке сначала подвергают гидролизу образующийся кислый газ обычно растворим в воде и поэтому легко удаляется при водной абсорбции в насадочной колонне. Хлористый и фтористый водород абсорбируются легче, чем бромистый водород. [c.138]

    Наиболее широкое применение в качестве титранта для определения различных веществ в неводных средах находит бром. Его получают электрогенерацией на аноде из алкил- или тетра-алкилбромидов на фоне уксусной кислоты или метанола. Выбор среды для титрования зависит главным образом от механизма и кинетики взаимодействия брома с определяемым веществом. Для аналитических определений другие электрогенерированные галогены (хлор, иод) применяют реже. Например, хлор применяют в основном для титрования ненасыщенных жирных кислот, иод — для определения воды методом Фишера, йодного числа жиров и масел, для титрования тиолов и димеркаптопро-панола в водно-спиртовом растворе. Описано применение элек-трогенерированного марганца(1П) и свинца(1У) для определения различных веществ на фоне ледяной уксусной кислоты. Рассмотрена возможность применения в качестве титрантов хрома (VI), получаемого из активного электрода в диметилформамиде. Для определения азосоединений, ферроцена и его производных в ацетонитриле предложено использовать в качестве титранта медь(П). [c.46]

    Растворы иода в неполярных растворителях типа четыреххлористого углерода или сероуглерода имеют пурпурную окраску, и их спектры подобны спектрам паров иода. При распределении иода между водной и органической фазами он переходит преимущественно в органический слой. Окраску иода используют для определения этого элемента и как индикатор при иодометрическом титровании. В присутствии содержащих гидроксил растворителей, например воды или этанола, иод сольватируется и образует коричневый комплекс, поглощающий более интенсивно в ультрафиолетовой части спектра. В присутствии иодид-иона образуются желто-коричневые полииодидные комплексы, которые можно обнаруживать при концентрациях вплоть до 10 Л1. Более интенсивно окрашенные иод-иодидные комплексы образуются с амилозой (синий), амилопектином (красно-пурпурный), гликогеном (коричневый) и некоторыми другими крахмалами [2]. Модифицированные типы крахмала, содержащие много амилозы, линейный крахмал , можно использовать в иодометрическом титровании. Хлор и бром можно также обнаружить по их реакции с иодид-ионом на иод-крахмальной бумаге реакция идет с освобождением иода, образующего затем синее соединение с крахмалом. Аналогичным образом реагируют многие другие окислители, Б том числе перекись водорода, нитрит- и перманганат-ионы. [c.297]


Смотреть страницы где упоминается термин Определение хлора и брома в водных растворах: [c.206]    [c.100]    [c.126]    [c.190]    [c.273]    [c.273]    [c.510]    [c.1223]    [c.83]    [c.32]    [c.344]    [c.136]    [c.136]   
Смотреть главы в:

Количественный анализ -> Определение хлора и брома в водных растворах

Визуальные методы эмиссионного спектрального анализа -> Определение хлора и брома в водных растворах




ПОИСК





Смотрите так же термины и статьи:

Бром-ион, водный раствор

Хлориты определение

хлор бром



© 2025 chem21.info Реклама на сайте