Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Движение электронов и ионов в газе

    О движении электронов в газах, подвижностях электронов и ионов и потерях энергии заряженными частицами при столкновениях смотрите также [927, 996—1003, 923, 924, 1007, 1011, 1012, 2476]. [c.285]

    Как только частицы или капельки попадают в электрическое поле электрофильтра, они приобретают электростатический заряд в результате воздействия двух механизмов механизма бомбардированной зарядки и механизма диффузионной зарядки. Ионы газа, а также электроны в случае отрицательной короны движутся при нормальных условиях сквозь поток газа, перенося частицы под влиянием электрического поля и заряжая частицы, с которыми они сталкиваются. Такая зарядка называется бомбардировкой (столкновение ионов). Кроме того, ионы газа (и электроны — там, где они присутствуют) осаждаются на частицах вследствие их теплового движения, такое явление называется диффузионной зарядкой (диффузия ионов). [c.448]


    На рис. 66 показано также примерное расположение линий электрического поля густота этих линий, а следовательно, и напряженность поля намного больше у провода, чем у пластины или стенки трубы. Вследствие указанной неоднородности поля ударная ионизация, а затем и электрический разряд могут возникнуть у поверхности провода, когда напряженность поля в этой области достаточно высока, но не распространяется до другого электрода. По мере удаления от провода напряженность поля уменьшается, и скорость движения электронов в газе становится уже недостаточной для поддержания лавинообразного процесса образования новых ионов. [c.132]

    Наиболее эффективная очистка газа от пыли достигается в электрофильтрах. Действие их основано на ионизации газа, т. е. расщеплении его молекул на положительно и отрицательно заряженные ионы, которое движутся к противоположно заряженным электродам. При повышении разности потенциалов между электродами до нескольких тысяч вольт кинетическая энергия ионов и электронов настолько возрастает, что при соударениях они расщепляют встречные молекулы на ионы и газ полностью ионизируется. Ири этом наблюдается слабое свечение газа ( корона ) вокруг проводника, который носит название коронирующего электрода. Ионы, имеющие тот же знак, что и коронирующий электрод, движутся к другому, осадительному электроду, который обычно соединен с положительным полюсом. При движении в запыленном газе отрицательные ионы [c.155]

    Действие электрофильтра основано на ионизации газа, т. е. расщеплении его молекул на положительно и отрицательно заряженные ионы. Газ можно ионизировать в пространстве между двумя электродами, к которым подведен электрический ток. Под действием электрического поля в газе образуются ионы и свободные электроны, благодаря движению которых через газ начинает протекать ток. [c.339]

    При прохождении электрического тока образуются дополнительные ионизированные молекулы от ультрафиолетового излучения, сопровождающего свечение короны. Положительные ионы газа и фотоны направляются к отрицательному электроду и освобождают электроны с его поверхности. Последние, проходя сквозь сильное поле рядом с электродом, образуют новые электроны и положительные ионы в результате столкновения с молекулами. Электроны удаляются из этой зоны, замедляя свое движение настолько, что их скорость становится недостаточной для ионизации столкновением, и присоединяются к молекулам газа, образуя ионы газа. Эти ионы газа затем движутся по направлению к осадительному электроду со скоростью, пропорциональной их заряду и напряженности электрического поля. [c.438]


    Механизм образования положительной короны явно отличается от механизма образования отрицательной короны, к свойствам положительной короны следует отнести более низкое напряжение перекрытия и малое образование озона. Электроны в газе движутся к зоне короны рядом с коронирующим электродом, где образуются лавины электронов для поддержания зоны короны. Положительные ионы газа, образованные этими электронными лавинами, движутся от электрода с гораздо меньшей скоростью, чем электроны в зоне отрицательной короны, следовательно во время их движения к осадительному электроду происходит меньше ионизирующих столкновений. При низкой напряженности поля, существующего рядом с этим электродом, они получают небольшое ускорение, поэтому в результате катодной бомбардировки происходит эмиссия малого числа электронов, и большая часть тока передается положительно заряженными ионами газа. Так как в зоне короны с высокой напряженностью поля происходит меньшее число ионизирующих столкновений, то наблюдается меньшее образование озона и оксидов азота, чем в зоне отрицательной короны. [c.439]

    ДВИЖЕНИЕ ЭЛЕКТРОНОВ И ИОНОВ В ВЫСОКОМ ВАКУУМЕ И В ГАЗЕ [c.132]

    Элементарные процессы в плазме. Движение электрически заряженных частиц в плазме отличается от движения нейтральных частиц в газах. В обычном газе отдельная частица между двумя последовательными столкновениями движется с определенной постоянной скоростью, акт соударения можно представить как столкновение жестких шаров, путь отдельной частицы — ломаная зигзагообразная линия. При соударении нейтральных частиц направление движения и скорость меняются резко. В плазме заряженные частицы движутся под действием электрических полей ускоренно и замедленно. Ускоренное движение периодически заменяется замедленным, а замедленное — ускоренным. Траектория движения, как правило, — сложная зигзагообразная кривая, не содержащая прямолинейных участков. Плазма характеризуется большим числом разновидностей взаимодействий и соударений. Типичными взаимодействиями — соударениями являются нейтральная частица — нейтральная частица, ион — нейтральная частица, электрон — нейтральная частица, электрон — электрон, ион — ион. Взаимодействие заряженных частиц отличается от взаимодействия нейтральных атомов и молекул большим радиусом действия и коллективным характером. Каждый из перечисленных видов взаимодействий вносит свой индивидуальный вклад в физико-химические характеристики плазмы. Их строгий учет сталкивается с большими трудностями. [c.248]

    При нагреве разреженных газообразных систем до очень высоких температур, как правило, превышающих десятки тысяч градусов, происходит ионизация молекул и газ переходит в специфическое состояние с электронно-ионной проводимостью, называемое плазменным состоянием. Ионы, появившиеся в низкотемпературной плазме в результате отщепления электронов, способны к дальнейшим химическим реакциям, поэтому в плазмах можно обнаружить такие экзотические с точки зрения химии частицы, как ионы СН5, Нз, Не2, Ыег и т. п. Кинетическая и потенциальная энергия частиц в плазменном состоянии превышает аналогичные параметры газообразных молекул, но наиболее существенные различия между плазмой и газами возникают при наложении электрического и магнитного полей большой напряженности. При этом движение частиц в плазме становится направленным, и придавая ему винтообразную форму, можно до известной степени управлять плазмой. [c.72]

    Во мн. металлах М.с. между атомами включает вклады ионной или ковалентной составляющей. Особенности М. с. у каждого металла м.б. связаны, напр., с электростатич. отталкиванием ионов друг от друга с учетом распределения электрич зарядов в них, с вкладом в образование связи электронов внутр. незаполненных оболочек переходных металлов, с корреляцией движения электронов в электронном газе и нек-рыми др. причинами. [c.41]

    В большинстве веществ магнитные эффекты, обусловленные электронными спинами или движением электронов на орбиталях, не проявляются, поскольку электроны в заполненных оболочках спарены. Многие ионы редкоземельных элементов парамагнитны, так как имеют неспаренные электроны. Свободные радикалы обладают нечетным числом электронов и поэтому также являются парамагнетиками. Наиболее известное вещество с парамагнитными свойствами — молекулярный кислород, который имеет два неспаренных электрона (разд. 14.5). Это свойство кислорода делает возможным определение его парциального давления в потоке газа по измерениям сил, действующих на трубку с газом в магнитном поле. [c.496]


    Существуют две теории Р ] разделения газовых смесей. Первая теория (ионная) объясняет разделение переносным движением положительных ионов по направлению к катоду. Среди положительных ионов, двигающихся к катоду, преобладают ионы компонента с меньшим потенциалом ионизации, так как ионов компонента с более высоким потенциалом ионизации в разрядном промежутке мало поэтому у катода возрастает концентрация легкоионизуемого компонента. Вторая теория (импульсная) исходит из того, что электроны передают при столкновении атомам газа определенный импульс, направленный к аноду. Чем меньше молекулярный вес газа, тем больший импульс сообщается атому, и поэтому у анода скапливается более легкий газ. [c.44]

    На схеме не показаны стеклянный колпак и система, обеспечивающая создание сверхвысокого вакуума. Газовая смесь содержит высокой чистоты аргон (парциальное давление 10 мм рт. ст.) и N2 (10 мм рт. ст.). Газ ионизируется электронами, испускаемыми катодом, при разности потенциалов между катодом и анодом примерно 40 В. Чтобы увеличить вероятность ионизации, параллельно центральной оси обычно накладывается магнитное поле. Когда разряд установится, на мишень — распыляемый материал — подается большой отрицательный потенциал. Ионы газа, ускоренные к мишени, выбивают из нее свободные нейтральные атомы. Атомам мишени передается импульс, достаточный для движения их к подложке. При изменении потенциалов двух мишеней, показанных на рисунке, меняется атомное соотношение металлов в осаждаемом на подложку нитриде. [c.27]

    Пучок электронов такой энергии, первоначально сформированный с помощью диафрагмы катода, при дальнейшем движении в разреженном газе с давлением 10 -Ь 10 Па не рассеивается в результате действия ионной фокусировки. Более того, установлено, что в указанном диапазоне давлений при межэлектродных расстояниях до 0,5 м пучок сохраняет на всем пути от диафрагмы до ванны металла диаметр диафрагмы. [c.307]

    Ориентировочный расчет Э. к. р. щелочных металлов можно произвести, пользуясь приближенной ионной моделью, согласно к-рой связь в металле осуществляется вследствие кулоновского притяжения ионов и электронов, равномерно распределенных между ионами. Расчет кулоновского взаимодействия в рамках этой модели проводится как и в случае ионного кристалла. С другой стороны, силы притяжения уравновешиваются силами отталкивания, к-рые в основном обусловлены движением электронов электронного газа. В этом случае энергия металлич. кристалла, равная энергии разложения его на ионы и электроны, определяется как  [c.506]

    ВЧ-разряд возбуждается в потоке газа-носителя разряда (азота, аргона, неона или другого инертного газа) в специальных разрядных трубках. Трубка подключается к специальному генератору незатухающих электромагнитных колебаний соответствующей частоты. В результате действия электромагнитного поля заряженные частицы (электроны, ионы) в газе приходят в колебательное движение и, сталкиваясь с атомами, ионизуют и возбуждают их. При достаточно высокой частоте число ионизующих столкновений оказывается так высоко, что отпадает надобность в электродах внутри трубки. Исследуемое вещество вводится в разряд в виде мелкораспыленного раствора или, значительно реже, в виде мелкодисперсного порошка. [c.92]

    Основные законы и характер движения заряженных частиц в высоком вакууме и в газе. Движение заряженных частиц—свободных электронов и ионов—как в газах, так и в высоком вакууме при любых условиях складывается из двух составляющих. Во-первых, электроны и ионы, находящиеся среди большой совокупности однородных с ними или любых других частиц, находятся в непрерывном беспорядочном тепловом движении, сопровождаемом постоянным обменом энергией между соударяющимися частицами. Ионизованный газ мы можем представлять себе как своеобразную смесь нейтрального газа, ионного газа и электронного газа. Совокупность электронов в высоком вакууме можно рассматривать как электронный газ. Из этих представлений вытекает ряд выводов, оправдываемых опытом, а также ряд ценных методов расчёта электрических явлений, происходящих в газах и высоком вакууме. [c.132]

    В явлениях прохождения электрического тока через высокий вакуум и через газы имеются налицо не только пространственные, но и поверхностные заряды на стенках прибора. Отрицательные заряды на стеклянных стенках образуются благодаря большей скорости хаотического движения электронов но сравнению с положительными ионами. Такие поверхностные заряды обусловливают поперечный градиент потенциала в разряде и играют существенную роль в теории положительного столба и газоразрядной плазмы. [c.158]

    Согласно (266) и (267), установившаяся скорость переносного движения электронов в газе прямо пропорциональна не первой степени напряжён1юсти поля Е, как это имеет место в случае ионов, а лишь У Е. Подвижность электронов Ке обратно пропорциональна У Е. [c.274]

    Для описания металлической связи часто используют модель свободного электрона . Согласно этой модели в узлах кристаллической решетки металла находятся положительно заряженные ионы металла, погруженные в электронный газ из нелокализо-ванных валентных электронов атомов, участвующих в образовании кристалла. Устойчивость кристалла обеспечивается силами притяжения между положительно заряженными ионами и электронным газом. Движение электронного газа подчиняется классическим законам перемещения частиц идеального газа. [c.23]

    Кроме анодных и катодных реакций при электрохимической коррозии происходит движение электронов в металле и ионов в электролите. Электролитами могут быть растворы солей, кислот и оснований, морская вода, почвенная вода, гюда атмосферы, содержащая СО2, ЗОа, О2 и другие газы. Кроме электрохимических реакций при коррозии обычно протекают вторичные химические реакции, например взаимодействие ионов металла с гидроксид-ионами, концентрация которых повышается в результате катодных реакций [c.229]

    Помимо изложенного выше, существуют два других представ ения о внутрен-аем строении металлов. Согласно одному из них. ионизированы все атомы металла, т. е. последний построен только из положительных ионов и свободных электронов. По другому представлению металл считается состоящим из нейтральных атомов, положительных и отрицательных ионов данного элемента, т. е. свободные электроны из рассмотрения исключаются. Строение металла с этой безэлектронной точки зрения передается схемой рис. П1-62. Так как между отдельными атомами возможен постоянный обмен состояниями (обусловленный обменом электронами), хорошая электроиро-водность металлов и их механическая деформируемость этому представлению не противоречат. Однако общность оптических свойств металлов говорит за наличие в иих электронного газа . Средняя скорость движения электронов в этом газе составляет около 100 км1сек, т. е. она примерно в двести раз выше средних скоростей теплового движения молекул в воздухе. [c.111]

    Экспериментальное подтвержденпе модели не снимает, однако, вопроса о ее теоретическом обосновании. Требуется объяснить, почему валентные электроны в металле можно считать свободными и даже наделять их совокупность свойствами идеального газа, несмотря на то, что, несомненно, имеются сильные взаимодействия электронов с решеткой (положительными ионами, колеблющимися около положений равновесия) и между собой. Показатель интенсивности ваимодейст-вия электронов с решеткой — высокий потенциальный барьер выхода электронов из металла. Движение электронов происходит в потенциальном ящике с весьма высокими стенками, причем поле внутри ящика, создаваемое решеткой, является периодическим. [c.184]

    Если в сосуд с электролитом — электролизер поместить электроды, присоединенные к электрическому источнику энергии, то в нем начнет протекать ионный ток, п])ичем положительно заряженные ионы — катионы будут двигаться к катоду (это в основном металлы и водород), а отрицательно заряженные ионы —анионы (хлор, ки слород, 0Н , 502-) —к аноду, у анода анионы отдают свой заряд и превращаются в нейтральные частицы, оседающие на электроде. У катода катионы отбирают электроны у электрода и также нейтрализуются, оседая на нем, причем выделяющиеся на электродах газы в виде пузырьков поднимаются кверху. Электрический ток во внешней цепи представляет собой движение электронов от анода к катоду (рис. 7.1). При этом раствор обедняется, и для поддержания непрерывности процесса электролиза приходится его обогащать. Так осуществляют извлечение тех или иных веществ из электролита (элек-трээкстракцию). Если же анод может растворяться в электролите по мере обеднения последнего, ТО ча тицы его, растворяясь в электролите, приобретают положительный заряд и направляются к катоду, на ко-то])ом осаждаются, тем самым осуществляется перенос материала с анода на катод. Так как при этом процесс [c.326]

    Осаждение дисперсных твердых и жидких частиц в электрическом поле (электроосаждение) позволяет эффективно очистить газ от очень мелких частиц. Оно основано на ионизации молекул газа электрическим разрядом. Если газ, содержащий свободные заряды (электроны и ионы), поместить между двумя электродами, создающими постоянное электрическое поле, то свободные заряды начнут двигаться по силовым линиям поля. Скорость движения и кинетическая энергия будут определяться напряженностью электрического поля. При повышении разности потенциалов до нескольких десятков киловольт кинетическая энергия ионов и электронов становится достаточной для того, чтобы они сталкивались с нейтральными газовыми молекулами, расщепляли их на ионы и свободные электроны. Вновь образовавшиеся заряды при своем движении также ионизирзтот газ. В результате образование ионов происходит лавинообразно, газ полностью ионизируется. Такую ионизацию называют ударной. При этом возникают условия для электрического разряда. При дальнейшем увеличении напряженности электрического поля возможны электрический пробой и короткое замыкание электродов. Чтобы избежать этого, создают неоднородное электрическое поле один электрод делают в виде проволоки, а другой-в виде охватывающей ее трубы или расположенной рядом пластины (рис. 10-11). [c.226]

    Плазма — это вещество в сильно ионизированном состоянии, причиной которого могут являться высокая температура или столкновение частиц газа с быстрыми электронами (в газовом разряде). Плазма имеет примерно равные концентрации электронов и положительно заряженных ионов, в целом оставаясь электрически нейтральной. Показано, что электроны плазмы находатся в хаотическом движении, средняя кинетическая энергия которого (температура) больше, чем нейтральных частиц и ионов газа. Иначе говоря, электронный газ в плазме имеет как бы более высокую температуру, чем действительная температура плазмы. В электрическом поле он сравнительно медленно продвигается в сторону анода. В космическом пространстве плазма наиболее распространенное состояние вещества. [c.89]

    Как и в других подобных исследованиях, Джастров и Пирс рассматривали случай больших скоростей движения шара в сильно ионизованном газе. Они заключили, что шар радиуса а заряжается отрицательно из-за больших скоростей электронов в окружающем ионизованном газе. Формулу для скорости появления электрического заряда на шаре, равного Z зарядам, в потоке с большой скоростью приводит Чопра [68]. Вокруг шара возникает слой положительных ионов толщины б вследствие электростатического отталкивания заряженным шаром отрицательно заряженных частиц, кроме высокоэнергетических электронов. Джастров и Пирс предположили, что б одинакова по поверхности шара и что б можно рассчитывать по нижеприводимой формуле, в которой считается, что задан потенциал поверхности шара фо (обусловленный X зарядами) и что отличная от нуля плотность числа ионов г равна плотности числа электронов (в газе нет незаряженных частиц и допускается только однократная ионизация)  [c.179]

    Характеристические потери энергии обусловлены коллективным возбуждением электронного газа вещества объекта. Электроны проводимости в металлах (полупроводниках) можно рассматривать как особый вид плазмы, характерной особенностью которой является то, что электроны движутся в решетке из жестко связанных между собой положительных ионов. Если под действием, например, бомбардирующей частицы, произошло смещение электронов так, что их локальная плотность увеличилась. То за счет возросших при этом снтПэттал-кивания у электронов появится составляющая скорости, выводящая их из данного объема. Однако в момент восстановления нейтральности в данном объеме эта скорость не равна нулю, и электроны продолжат свое движение, что приведет в свою очередь к возрастанию положительного заряда и к движению электрона в обратную сторону. Таким образом возникают коллективные колебания в электронной плазме. Совокупность валентных электронов может принимать определенные порции энергии, соответствующие некоторому дискретному уровню возбуждения данного твердого тела. Эти порции энергии можно рассматривать как своего рода квазичастицы— плазмоны. Время жизни плазмона не превышает 10 с. Для каждого металла (полупроводпика и диэлектрика) характерна определенная величина энергии плазмона, поэтому потери энергии электронов на возбуждение плазмонов называют характеристическими или плазменными потерями (рис. 19.4), [c.427]

    При столкновении по южительного иона с молекулой или атомом газа могут иметь место два процесса. Во-первых, ион и молекула обмениваются импульсом и энергией и при этом меняется направление их движения. Во-вторых, кроме перераспределения энергии может происходить обмен зарядом, сопровождающийся рассеянием. Например, при движении быстрых ионов в газе столкновение может привести к вырыванию ионом электрона из атома газа, в результате чего быстрый ион становится быстрым нейтральным атомом, а медленный атом — медленным положительным ионом. Когда положительные ионы движутся в электрическом поле, перезарядка проявляется в уменьшении эффективной скорости дрейфа ионов и, следовательно, их подвижность становится меньшей. [c.132]

    Тлеющий разряд формируется при низких давлениях газа (0,5—100 мм рт. ст.). Первичное возникновение тока в газе связано с его начальной электропроводностью, обусловленной присутствием в нем заряженных частиц-ионов, постоянно образующихся под действием внешних ионизаторов света, космического излучения, радиоактивности и т. д. Под влиянием приложенной разности потенциалов положительные ионы газа приобретают ускорение и, двигаясь к катоду, с большой кинетической энергией бомбардируют его поверхность, выбивая из нее электроны. Бом- бардировка ионами — главная причина эмиссии. Однако электроны могут эмитироваться катодом и по другим причинам, в частности вследствие фотоэлектрического эффекта. Эмитированные катодом электроны в своем движении к противоположному электроду многократно сталкиваются с молекулами газа, передавая им свою энергию. Так появляются новые заряженные частицы и происходят различные другие превращения молекул — их возбуждение, диссоциация на свободные радикалы и атомы. Передача энергии при столкновении электронов с молекулами газа и ионизированных молекул газа друг с другом — основной [c.55]

    Второе обстоятельство, резко отличающее процесс неупруго1х соударения положительного иона от такого же соударения электрона, заключается в том, что быстрый электрон за то время, в течение которого он передаёт долю своей энергии нейтральной частице газа, успевает удалиться, и избыток энергии, приобретённый нейтральной частицей, неизбежно ведёт к изменению её энергетического состояния. Наоборот, вследствие гораздо меньшей скорости движения положительного иона и нейтральная частица и ион за всё время соударения подвергаются воздействию лишь медленно изменяющегося электрического поля. Поэтому в большом числе случаев при начавшемся удалении иона от [c.111]


Смотреть страницы где упоминается термин Движение электронов и ионов в газе: [c.171]    [c.327]    [c.35]    [c.25]    [c.239]    [c.338]    [c.17]    [c.370]    [c.50]    [c.239]    [c.50]    [c.8]    [c.343]    [c.343]    [c.1707]    [c.10]    [c.97]   
Смотреть главы в:

Электрические явления в газах и вакууме -> Движение электронов и ионов в газе




ПОИСК





Смотрите так же термины и статьи:

Движение ионов

Ионы газах



© 2025 chem21.info Реклама на сайте