Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства и применение солей хрома

    Никель оказался самым перспективным металлом для изготовления химической аппаратуры, которая должна выдерживать разъедающее действие горячих щелочей, фтора, расплавленных солей и т. д. Химическая пассивность никеля при нагревании позволила использовать его в ракетной технике. Более трех четвертей получаемого никеля расходуется электровакуумной техникой. В настоящее время промышленность применяет несколько тысяч видов его сплавов. Так, с медью никель смешивается в любых пропорциях. Прекрасны механические свойства медноникелевых сплавов, известных еще древним металлургам. Никель обладает интересным отбеливающим свойством 20% никеля в сплаве полностью гасят красный цвет меди. Сплав нейзильбер (сплав меди, никеля и 20% цинка) и родственный ему сплав мельхиор (нет цинка, но присутствует 1 % марганца) применяют как в инженерных, так и в декоративных целях. Другой сплав меди (28—30%) и никеля (60—70%) нашел широкое применение в химическом машиностроении. Хорошо известны конструкционные никелевые и нержавеющие хромоникелевые стали. Инконель (сплав никеля, хрома с добавкой титана и других элементов) стал одним из главных материалов ракетной техники. Нихром (15% Сг и 60% Ni) широко используется в электронагревательных приборах. Большое количество никеля используется для никелирования. [c.400]


    Соли хрома весьма разнообразны по своему химическому составу, структуре кристаллической решетки и физическим свойствам. Соединения хрома находят широкое применение в промышленности [1 ]. Получение их так или иначе связано с кристаллизацией, но роль кристаллизационного процесса при производстве того или иного продукта различна. Поэтому рассмотрим главным образом те из солей хрома, получение которых связано с образованием осадков в большей степени. [c.246]

    Глава XII СОЛИ ХРОМА СВОЙСТВА И ПРИМЕНЕНИЕ СОЛЕЙ ХРОМА [c.277]

    Протравные красители для шерсти, часто называемые кислотно-протравными, обладают слабокислыми свойствами и могут соединяться с волокнами и, следовательно, окрашивать материал. Однако такая окраска непрочна и не обладает необходимой яркостью. Эти недостатки устраняются тем, что животные волокна (шерсть, натуральный шелк, кожа) обрабатывают перед крашением, в процессе крашения или же после окраски протравами. В качестве протрав применяют главным образом соли хрома, алюминия и железа. В результате такого крашения на волокнах образуются нерастворимые лаки. Следует отметить, что при взаимодействии протравных красителей с указанными выше протравами, а также и с солями других металлов, не на волокне, а в реакционном сосуде, могут быть получены лаки, которые находят применение при изготовлении полиграфических художественных красок и т. д. [c.372]

    Проблема борьбы с электризацией топлив столь актуальна, а применение антистатических присадок столь эффективно, что наряду с испытаниями присадки А8А-3 проводятся поиски новых соединений для этой цели, как содержащих металлы, так и беззольных органических веществ [25—30]. Запатентованы органические производные хрома [31, 32], магния [33], амфотер-ные соединения металлов [34], соли нещелочных металлов [35, 36] и др. Среди неметаллических соединений, предложенных в качестве антистатических присадок, наибольшее число патентов выдано на четвертичные аммониевые основания [37—41]. Эти соединения беззоль-ны, на их базе легче получать би- и полифункциональ-ные присадки к реактивным топливам. Например, такие присадки могут обладать антиокислительными, противокоррозионными, защитными и другими свойствами [42—49]. [c.239]

    Соли нафтеновых кислот также пашли широкое применение. Медные и алюминиевые соли нафтеновых кислот можно применять как инсектисиды. Нафтенаты свинца, хрома, кобальта и марганца применяют в качестве составных частей для лаков, в качестве катализаторов при окислении углеводородов и в качестве присадок к смазочным маслам. Нафтенаты олова и ртути обладают антиокислительными свойствами, в частности, они уменьшают осадкообразование в трансформаторных маслах. Бариевые и кальциевые соли нафтеновых кислот употребляют при изготовлении цветных лаков и консистентных смазок. При производство мыла применяются натриевые соли смешанных нафтеновых кислот, причем эмульгирующая и пенообразующая способность натриевых мыл очень высока. Натриевые соли нафтеновых кислот мазеобразны, гигроскопичны. Их с успехом можно применять в качестве загустителя при производстве консистентных смазок. Для этой же цели применяются литиевые мыла полученные на их основе смазки имеют весьма высокие эксплуатационные свойства. Медные, цинковые и свинцовые соли нафтеновых кислот могут применяться в качество предохраняющих средств д.ля дерева например, для пропитки шпал). [c.57]


    Кинетический метод определения железа в солях основан на индикаторной реакции окисления стильбексона перекисью водорода. Определение 0,01—0,1 мкг железа в 5 мл раствора возможно в присутствии 10 —10 -кратных количеств ионов кобальта, хрома, никеля, марганца, меди, цинка, бериллия, щелочноземельных металлов и других. При концентрации солей щелочных металлов до 0,5 г в 5 мл и алюминия до 0,05 г в 5 мл раствора реакция несколько замедляется, однако определение железа можно проводить методом добавок, вводимых в анализируемые и холостые растворы. С применением реактивов и растворов указанной чистоты определяемый минимум составляет 0,005 мкг железа в 5 мл раствора. Метод добавок имеет то преимущество, что не требует приготовления эталонных растворов (т. е. растворов для построения калибровочного графика) и дает возможность выполнять определения в присутствии примесей, влияющих на скорость реакции. Сущность метода добавок [1, 2] заключается в том, что измеряют скорость индикаторной реакции в равных аликвотных частях анализируемого и холостого растворов с добавками определяемого иона и без них. При графическом определении концентрации иона по оси ординат откладывают соответствующую функцию ф измеряемого свойства, пропорциональную концентрации катализатора при постоянстве прочих условий ,  [c.39]

    Применение прецизионных сплавов системы железо—никель обусловлено их особыми физическими свойствами. При легировании железа никелем коррозионная стойкость возрастает с увеличением содержания в них никеля. Сплавы Ре—N1 будут более устойчивы, чем обычные углеродистые стали, в атмосферных условиях, в морской воде, а также в слабых растворах солей, кислот и щелочей. В то же время нельзя не отметить, что в этих сплавах наличие железа >20 % способствует появлению на поверхности металла точечной коррозии, например в растворах, содержащих ионы С1-, Вг , 1- и СЮ ". Аналогичные сплавы подвержены коррозионному растрескиванию в растворах КаОН и КОН, особенно в присутствии хлористых солей. Легирование железа, например хромом, заметно повышает коррозионную стойкость сплава вследствие перевода его в пассивное состояние. Резкое повышение коррозионной стойкости наблюдают при содержании в сплавах 12—13 % Сг. Такое количество хрома является минимальным для сплавов, которые будут коррозионностойкими в окислительных средах и в атмосферных условиях. Увеличение содержания хрома >13% приводит к дальнейшему повышению коррозионной стойкости сплава. [c.160]

    Zn(0H)2 К2Сг04-2Н20. Малярный цинковый крон обладает повышенными, по сравнению с грунтовочным кроном, пигментными свойствами, но вследствие гидролиза с образованием солей хрома является токсичным пигментом и находит ограниченное применение-(в основном для художественных красок и красок специального назначения). [c.38]

    Названия, образованные по правилам советской рациональной номенклатуры, дают исчерпывающие сведения о свойствах, способах и областях применения красителей и свойствах окрасок. Так, название Прямой диазо-бордо светопрочный С указывает на то, что это краситель, способный окрашивать целлюлозные волокна непосредственно из водного раствора в присутствии электролитов в цвет бордо с синеватым оттенком, причем образующаяся окраска весьма светостойка, а устойчивость ее к стирке может быть повышена путем диазотирования на волокне и сочетания с подходящей азосоставляющей (для красных красителей — с р-нафтолом). Название Однохромовый оливковый Ж означает, что это кислотно-протравной краситель для шерсти, окрашивающий ее в оливковый цвет с желтоватым оттенком, причем протравление (обработку солями хрома) можно производить одновременно с крашением. Название Кислотный оранжевый светопрочный Н4КМ означает, что это металлсодержащий краситель для шерсти, образующий оранжевые с заметным красноватым оттенком окраски, которые обладают высокой светостойкостью краситель можно применять для крашения полушерстяных изделий, так как крашение им ведут из нейтральной ванны. Аналогично расшифровываются названия и других красителей. [c.104]

    Высокой детонационной стабильностью обладают некоторые внутрикомплексные соли меди. Их эффективность близка к эффективности железоорганических антидетонаторов. Однако эти соединения нестабильны при хранении и в их присутствии ускоряется окисление углеводородов бензина. Кроме того, внутрикомплексные соединения меди отлагаются на стенках впускного трубопровода и нарушают процесс смесеобразования, поэтому практического применения они не получили. Отмечены антидетонационные свойства таких соединений, как карбонилникель, 2-этилгексоат кобальта, диэтилди-селенид, тетрабутилолово, ацетилацетонаты кобальта и хрома, лаурат индия и др. [34, 95, 96, 102—105]. [c.39]

    Термостойкость неминерализованных буровых растворов определяется не только типом применяемых для обработки химических реагентов понизителей водоотдачи или вязкости и составом твердой фазы, но и в ряде случаев.от наличия в системе специальных добавок, которые сами по себе, т. е. без реагентов-понизителей водоотдачи или вязкости, не оказывают сколько-либо заметного влияния на вязкостные и фильтрационные свойства буровых растворов. К таким добавкам в основном относятся хроматы и би-хроматы натрия и калия. (Хромовые соли калия по стоимости значительно выше, а по действию аналогичны натриевым солям.) Применение метода раздельного введения хромовых солей в буровой практике Советского Союза началось в начале 60-х годов по предложению Э. Г. Кистера и быстро получило широкое распространение. Наиболее важные химические свойства хроматов — сильная окислительная способность с восстановлением шестива-лентного хрома до трехвалентного и склонность к интенсивному комплексообразованию. Окислительные свойства хроматов зависят от pH среды, наличия восстановителя и температуры. Особенно, как указывает Э. Г. Кистер, в присутствии сильных восстановителей хроматы могут окисляться в нейтральной и даже слабощелочной среде. При нагревании восстановление хроматов усиливается и проявляется даже при высоких значениях pH. Заметно ускоряется этот процесс при 80 С, а при 130—150 С достигает максимума (кривая зависимости выполаживается). [c.176]


    Сульфид-ионы, как уже было упомянуто, редко используют в качестве осадителей в весовом анализе из-за их неспецифического осаждающего действия, а также из-за неподходящих для целей весового анализа свойств. Осаждение ионов металлов в виде гидроксидов в большой степени страдает теми же недостатками, но все же находит применение. Примером служит осаждение Ре + и аммиаком. Метод считается наиболее точным для определения этих металлов. Использование аммиака в качестве осадителя имеет то-преимущество, что большая часть двухвалентных катионов, таких, как Си +, N12+, 2п +, 0(1 +, в аммиачной среде образует устойчивые комплексы, которые остаются в растворе. Употребление аммиака, однако, не предотвращает осаждения других трех- и четырехвалентных ионов (Сг +, Т1 +), а при определенных условиях даже и некоторых двухвалентных [например, осаждение Mg(0H)2 в отсутствие избытка солей аммония в растворе]. Иногда при анализе пород и минералов на определенном этапе производится осаждение соответствующих гидроксидов при помощи аммиака, их прокаливание и совместное взвешивание. Полученный результат обозначается как РгОз и представляет собой сумму нескольких оксидов, обычно РегОз + АЬОзТ102-Ь Р2О5, а при наличии в пробе хрома и циркония —еще и оксидов этих, элементов. При необходимости отдельные компоненты смеси оксидов можно определять раздельно. [c.221]

    Селитра представляет бесцветную соль, имеющую особый прохладительный вкус. Она легко кристаллизуется длинными, по бокам бороздчатыми, ромбическими шестигранными призмами, оканчивающимися такими же пирамидами. Ее кристаллы (уд- вес 1,93) не содержат воды. При слабом накаливании (339°) селитра плавится в совершенно бесцветную жидкость. При обыкновенной температуре в твердом виде КЫО малодеятельна и неизменна, но при возвышенной температуре она действует, как весьма сильное окисляющее средство, потому что может отдать смешанным с нею веществам значительное количество кислорода. Брошенная на раскаленный уголь, селитра производит быстрое его горение, а механическая смесь ее с измельченным углем загорается от прикосновения с накаленным телом и продолжает сама собою гореть. При этом выделяется азот, а кислород селитры идет на, окисление угля, вследствие чего и получаются углекалиевая соль и углекислый газ (или окись углерода) 4КЫО - С = = 2К СО ЗСО - -2№. Явление зависит от того, что при этом отделяется много тепла и раз начавшееся горение может само собою продолжаться, не требуя накаливания. Подобное же горение происходит и при нагревании селитры с серою и различными другими горючими телами. Напр. 2КЫО -(-25= = К ЗО О . В особенности замечательно окисление таких металлов, которые способны давать с избытком кислорода кислотные окислы, остающиеся при этом в соединении с окисью калия в виде калиевых солей. Таковы, напр., марганец, сурьма, мышьяк, железо, хром и др. Эти элементы, как С и 5, вытесняют свободный азот. Низшие степени окисления этих металлов, сплавленные с селитрою, переходят в самые высшие степени окисления. Понятно, после этого, что в химической практике и технике селитра употребляется во многих случаях как окислительное средство, действующее при высокой темпе[>атуре. На этом же основано применение ее для обыкновенного пороха, который есть механическая смесь мелко измельченных серы, селитры и угля. Относительное содержание этих веществ меняется, смотря по назначению пороха и по свойству угля, употребленного для состава (уголь берется рыхлый, не совершенно прокаленный и потому содержащий водород и кислород). При горении образуются газы, а именно — преимущественно азот, углекислый газ и окись углерода, которые и производят значительное давление, если свободный выход образующихся газов чем-либо прегражден. [c.29]

    При нагревании с кислородными кислотами хромовая кислота выделяет кислород, напр., с серною 2СгО - - 3№50 = = Сг (50 ) - -0 + ЗНЮ. Понятно, вследствие этого, что смесь хромовой кислоты или ее солей с серною кислотою составляет отличное окисляющее средство, которое употребляется часто в химической практике и в технике, для некоторых случаев окисления. Так, №5 и 50 переводится этим путем в Н ЗО . Действуя как сильно окисляющее вещество, СЮ переходит в окись Сг Оотдавая половину содержащегося в нем кислорода 2СЮ = Сг-О О 558]. Действуя на раствор иодистого калия, СгО, как многие окислители, выделяет иод, причем реакция идет пропорционально содержанию СгО , и количество освобождающегося иода может служить для определения количества СгО (количество иода может быть с точностью определяемо иодометрически, гл. 20, доп. 535). Накаливая хромовый ангидрид в струе аммиачного газа, получают тоже окись хрома, воду и азот. Во всех случаях, когда хромовая кислота действует окислительно при нагревании и в присутствии кислот, продукт ее раскисления составляет соль СгХ окиси хрома зеленого цвета, так что красный или желтый раствор соли хромовой кислоты переходит при этом в зеленый раствор соли окиси хрома СгЮ . Окись эта сходна с А1ЮЗ, РеЮ и тому подобными основаниями состава кЮ . Это сходство видно в трудной растворимости безводной окиси в кислотах, в студенистом виде коллоидального гидрата, в образовании квасцов [и] летучего безводного хлорного хрома r l . в применении гидрата для протравы при крашении и т. п. Окись хрома, r O редко в малых количествах встречается в хромовой охре, образуется окислением хрома и низших его окислов, раскислением и разложением солей хромовой кислоты (напр., прокаливанием аммиачной и ртутной солей) и распадением солеобразных соединений самой окиси СгХ или Сг Х , подобно глинозему, с которым окись хрома разделяет и то свойство, что образует слабое основание, легко дающее, кроме средних СгХ , двойные и основные соли. Здесь особо примечательно, что соли окиси хрома обладают или фиолетовым, или зеленым цветом даже при совершенно том же составе, так что нагревание или другие условия переводят [c.237]

    Из различных методов Р. наиболее шпроко пзвестно применение р-ров трехвалентного титана (подробнее см. Титанометрия) , из др. методов Р. наиболее важное значение пмеет титрование солями двухвалентного хрома. Последний является одним из наиболее сильных восстановителей Е = — 0,4 е здесь и далее / ц приводится для реакций типа Сг + — е Сг + ). Поэтому с помощью СТР хрома (П) можно выполнить много различных определений. Однако это же свойство обусловливает практич. трудности прпменения, т. к. СТР хрома (П) очень быстро окисляется даже в атмосфере инертного газа хром (П) постепенно выделяет водород из воды, окисляясь при этом до трехвалептно-го. Несколько более устойчив р-р ацетата хрома (П). Другая трудность применения (П) обусловлена его окраской, а также окраской продукта реакции — трехвалентного хрома. В связп с этим применение цветных индикаторов затруднено п конечную точку устанавливают потенциометрически. [c.302]

    Групповым реагентом на катионы III аналитической группы является раствор (ЫН4)г5 в присутствии NH4OH nNHi l. Условия его применения рассмотрены в экспериментальной части. Катионы III аналитической группы (в отличие от катионов I и II групп) обладают рядом характерных особенностей их соли в водных растворах подвергаются гидролизу катионы проявляют окислительно-восстановительные свойства при осаждении групповым реагентом образуют коллоидные растворы гидроксиды алюминия, хрома и цинка проявляют амфотерные свойства, образуют комплексные соединения. Для успешного изучения катионов III группы необходимо снова повторить следующие разделы 1) амфотерные электролиты (гл. 11) 2) коллоидные растворы (гл. 13) 3) окислительно-восстановительные реакции (гл. 14) 4) гидролиз солей (гл. 10) 6) комплексные соединения (гл. 16). [c.273]

    Наиболее важными красителями оксазинового класса являются Галлоцианины. Галлоцианин (Кехлин, 1881 С1 883) получается с 95%-ным выходом при кипячении метанольного раствора галловой кислоты и избытка соединения I. По неустановленной до сих пор причине метанол, применяющийся как растворитель, не может быть заменен этанолом. Галлоцианин В5 является бисульфитным соединением. Галлоцианин красит по хромовой протраве в фиолетовый цвет поскольку он обладает свойствами как основного так и кислотного красителя, то он лучше всего фиксируется при применении комбинированной протравы танниновой кислоты и металлической соли. Красители этого типа представляют ценность для ситцепечатания и большей частью применяются в сочетании с таннином и ацетатом хрома. Они применяются также для крашения шерсти, хотя глубокие и яркие синие выкраски по хромовой протраве обладают лишь умеренной прочностью. Для крашения шерсти Галло-циании может применяться в виде сульфокислоты лейкосоединения Галлоцианин М5 (С1 885) получается сульфированием лейкогалло-цианина, а Яркий галлоцианин (Хромцианин V С1 888) — нагреванием Галлоцианина с водным раствором бисульфита натрия в автоклаве. [c.897]

    Пиридин в растворах солей цинка как при нагревании, так и на холоду дает белый аморфный осадок гидрата окиси цинка осаждение при этом не количественное. В присутствии хлористого аммония при нагревании осадка не образуется, но по охлаждении раствора выделяются бесцветные игольчатые кристаллы пиридиново-хлоридного комплекса цинка [2п(С5Н5М)2]С12 [29, 30]. Свойство этого комплекса легко растворяться при нагревании было использовано нами для отделения цинка от железа, алюминия и хрома. Изучая условия отделения этих металлов, мы, на основании наших предыдущих работ по применению пиридина, осаждали железо, алюминий и хром пиридином в присутствии хлористого аммония, стремясь создать условия для наиболее полного перехода цинка в раствор. [c.28]

    В последние годы освоен способ никелирования металлических изделий без применения электрического тока. Процесс заключается в получении защитного никелевого покрытия путем восстановления никелевых солей гипофосфитом натрия, калия или кальция при температуре раствора 90—92°. Скорость осаждения никеля 10— 30 мкЫас. Осадки получаются блестящими и равномерными по всей покрываемой поверхности. После термической обработки никелированных изделий при температуре 400° и выше на поверхности изделия образуется сплав, состоящий из твердого раствора никеля и интерметаллического соединения М1зР. Твердость покрытия после термообработки приближается к твердости хрома и при толщине 25—30 мк, пленка практически беспориста. Антикоррозионные свойства покрытия при этом значительно повышаются. [c.290]


Смотреть страницы где упоминается термин Свойства и применение солей хрома: [c.542]    [c.647]    [c.307]    [c.206]    [c.733]    [c.107]    [c.214]   
Смотреть главы в:

Технология минеральных удобрений и солей -> Свойства и применение солей хрома




ПОИСК





Смотрите так же термины и статьи:

Хром, свойства



© 2025 chem21.info Реклама на сайте