Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Общие сведения о серной кислоте

    Во втором томе даются сведения о каталитических процессах исчерпывающего и селективного гидрирования, обычного и окислительного дегидрирования, синтеза метанола, получения дизельного топлива из монооксида углерода и водорода. Рассмотрены также общие вопросы подбора катализаторов, свойства и применения некоторых гетерогенных и гомогенных катализаторов. Завершает второй том описание катализаторов производства серной кислоты. [c.6]


    Общие сведения по технологии фталевого ангидрида. Промышленный синтез фталевого ангидрида первоначально осуществляли путем окисления нафталина концентрированной серной кислотой в присутствии сульфата ртути при 250—300° С. На 1 моль нафталина расходовалось 9 моль серной кислоты. Выход фталевого ангидрида составлял 20—25%. При этом серная кислота раскислялась до сернистого газа, который требовалось улавливать. Применение ртути и дымящей серной кислоты, а также выделение больших количеств сернистого газа создавало вредные условия труда. Метод был малопроизводителен и имел низкие технико-экономические показатели. [c.15]

    Вы ознакомились с важнейшими минеральными кисло тами и основаниями получили сведения о многих элементах, об их способности соединяться друг с другом и образовывать новые вещества с различными свойствами. Прк всем разнообразии свойств различных элементов и нх соединений нетрудно убедиться в том, что одни элементы сходны между собой, а другие, наоборот, глубоко различны точно так же одни соединения близки друг к другу по своим свойствам, другие резко отличаются друг от друга. Достаточно указать на сходные свойства таких элементов., как натрий, калий, и глубокое различие элементов натрия и хлора целый ряд общих свойств серной, азотной и соляной кислот и полное отличие свойств едкого натра и соляной кислоты. [c.250]

    Глава IV СЕРНАЯ КИСЛОТА 1. ОБЩИЕ СВЕДЕНИЯ [c.59]

    Судьба электрохимического метода зависит от его экономических преимуществ по сравнению с другими методами, в частности с несовершенным, но все еще применяемым в промышленности способом Рашига. Из сопоставления расходов на сырье видно, что электрохимический способ имеет явные преимущества перед способом Рашига. Стоимость сырья в первом случае (азотная и серная кислоты) примерно в 6 раз меньше, чем во втором (нитрат натрия, бисульфит натрия, сернистый ангидрид). Но надо учитывать, что на восстановление азотной кислоты требуется очень много электроэнергии. По тем сведениям, которые опубликованы в литературе, на 1 т сульфата гидроксиламина необходимо затратить 16,4—19,6 тыс. кВт-ч электроэнергии. Однако при современных ценах на электроэнергию, существующих в районах крупных гидроэлектростанций, общие исходные затраты на сырье и электроэнергию в электрохимическом способе будут все же в 4,5 раза ниже, чем в химическом. [c.79]


    ОБЩИЕ СВЕДЕНИЯ О серной КИСЛОТЕ [c.5]

    Общие сведения. Химический состав серной кислоты выражается [c.8]

    ОБЩИЕ СВЕДЕНИЯ О СЕРНОЙ КИСЛОТЕ [c.5]

    Чтобы облегчить возможность приложения рассмотренных в книге основных закономерностей к различным каталитическим процессам, мы старались излагать материал в наиболее общей форме. Теоретические положения рассмотрены здесь в непосредственной связи с решаемыми на их основе практическими задачами—подбором состава, структуры и формы катализаторов, нахождением оптимальных условий проведения процесса, разработкой конструкций контактных аппаратов и т. п. Технологические схемы и конструкция аппаратов описаны очень кратко—дана только сущность протекающих процессов. Более подробные данные о технологическом осуществлении процесса контактирования, а также сведения об остальных операциях контактного производства—обжиге сернистого сырья, очистке газа, абсорбции серного ангидрида—можно найти в книге К. М. Малина, Н. Л. Ар-кина, Г. К. Борескова и М. Г. Слинько Технология серной кислоты , Госхимиздат, 1950, и в книге И. Н. Кузьминых Производство серной кислоты , ОНТИ, 1937. Из более старых работ необходимо упомянуть монографию проф. П. М. Лукьянова Производство серной кислоты методом контактного окисления . [c.7]

    В учебнике рассматривается производство неорганических и органических веществ. В первой — общей части книги даются сведения о развитии химической промышленности в СССР, химическом сырье и методах его подготовки к переработке, энергетике, основных закономерностях и типовых технологических процессах и схемах в химической промышленности. Во второй части описывается производство неорганических веществ (серной кислоты, аммиака, азотной кислоты, соды, едкого натра, хлора, минеральных удобрений и силикатов), в третьей — производство органических веществ (технология твердого топлива, нефти и газообразного топлива, основной органический синтез, технология промежуточных продуктов и красителей, пластических масс и химических волокон, каучука и резины). [c.2]

    Для термохимических расчетов в производстве серной кислоты необходимо иметь данные о теплоте образования серной кислоты, теплоте разбавления и смешивания кислот, теплоемкости, теплоте испарения воды, теплопроводности, вязкости и др. Объем учебника не позволяет подробно остановиться на этих свойствах серной кислоты, поэтому ниже приводятся только самые общие сведения. [c.17]

    Контактное производство серной кислоты включает три стадии 1) очистку газа от примесей, 2) контактное окисление 80.j в SO3 и 3) извлечение SO3 из газа с получением олеума или купоросного масла. Центральным звеном всего технологического процесса является каталитическое окисление SO2 в SO3. Остальные две стадии контактного производства серной кислоты в основном сводятся к взаимодействию между газовой и жидкой фазами в орошаемых башнях с насадкой. Общие сведения о кинетике таких гетерогенных процессов и о работе абсорбционных башен были приведены в 43 и 52 и здесь повторно не излагаются, [c.159]

    Общие сведения об этом методе газоочистки изложены при описании работы горячих огарковых электрофильтров ( 35— 37). Мокрые электрофильтры контактных систем по устройству сходны с мокрыми электрофильтрами, применяемыми для осаждения кислотного тумана из выхлопных газов при упарке серной кислоты ( 60). Газы контактных систем не содержат окислов азота, а потому выбор коррозионностойких материалов для монтажа мокрых электрофильтров контактных систем упрощается. Раньше для этой цели применяли свинец в настоящее время стремятся применять взамен свинца другие конструкционные материалы, например винипласт или сталь, защищенную от коррозии покрытием из кислотостойких органических веществ. Винипласт и органические защитные покрытия неэлектропроводны, но благодаря электропроводности самого конденсата кислоты возможно заземление осадительных электродов, изготовленных из этих материалов. Наиболее целесообразной считается сотовая конструк- [c.184]

    Книга является учебным пособием по курсу Общая химическая технология для студентов высших учебных заведений и лиц, изучающих ОХТ самостоятельно. В ней изложены общие закономерности химической технологии основы теории, расчета и подход к выбору химических реакторов рассмотрены гетерогенные и каталитические процессы и их аппаратурное оформление. Приведены методы организации химико-технологических процессов, даны сведения о химическом сырье, воде и источниках энергии. Описаны производства важнейших химических продуктов — серной и азотной кислот, аммиака, продуктов основного органического синтеза и высокомолекулярных соединений. [c.496]


    Цвет вазелина, кислотность, содержание золы, воды, температура плавления и вспышки определяются по способам, общим с таковыми для минеральных масел и парафина. Более подробные сведения см. Гольде (Исследование минеральных масел и жиров). Ришар (370) предлагает испытывать полноту очистки вазелина растиранием в ступке смеси вазелина с 2 объемами холодной концентрированной серной кислоты. В течение часа растирания окраска не должна быть темнее бледно-желтой. Относите льно температуры плавления вазелина интересно отметить, что при определении ее в приборе Уббелоде долго стоявший в посуде продукт плавится на нееколько градусов ниже свеже сплавленного и охлажденного (403). [c.343]

    Общие сведения о пастах. При изготовлении решетчатых и коробчатых пластин активные вещества наносят на решетку в виде пасты. Практическое значение имеют глето-суричная паста, приготовленная смешением окислов свинца с серной кислотой, и порошковая, получаемая при взаимодействии серной кислоты со свинцовым порошком. Примерные составы паст приведены в табл. П-1. [c.77]

    Халькогены не растворяются в разбавленных соляной и серной кислотах. Азотная кислота окисляет (при нагревании) серу до серной кислоты, а селен и теллур — до селенистой НаЗеОз и теллуристой Н-ДеОз. Поскольку кислород и сера имеют важное биологическое значение, они подробно рассматриваются в 19, 20. О селене и теллуре достаточно кратких сведений (в порядке общей характеристики). [c.373]

    В учебнике на основе новой программы освещаются общие вопросы н основные закономерности химической технологии, дается краткая история развития химической промышленности, рассматриваются основы математического моделирования химико-технологических процессов, процессы и аппараты в химических производствах, даются сведения о конструкционных материалах для химической аппаратуры, о контрольно-регулирующей аппаратуре, сырье и энергетике в химической промышлеииости, описывается производство неорганических веществ водорода, кислорода, азота, аммиака, азотной и серной кислот и других продуктов. Учебник предназначен для студентов университетов, им могут пользоваться студенты естественных факультетов педагогических институтов. [c.2]

    Однако, пожалуй, главным достоинством расщепления по Смиту является йозможность частичного гидролиза полигидроксильного производного, получаемого из полисахарида . Поскольку гликозидные связи тех моносахаридных звеньев, циклическая форма которых разрушен.] окислением, превращаются в обычные ацетальные, резко возрастает их чувствительность к кислотам. Гидролиз 0,1 н. серной кислотой при комнатной температуре позволяет полностью расщепить ацетальные связи, не затрагивая сохранившиеся гликопиранозидные, и получить в общем случае наряду с обычными низшими оксиальдегидами и полиолами их гликозиды. Установление строения этих гликозидов дает сведения о последовательности мэносахаридных звеньев н конфигурациях гликозидных связей в исходном полисахариде. Часто в результате частичного гидролиза полигидроксильного производного образуется новый полисахарид с более простой, по сравнению с исходным полисахаридом, структурой [c.500]

    Пиктэ с сотрудниками [7] улучшили предложенный метод и показали, что он имеет значение общего препаративного метода. Они проводили реакцию в кипящем инертном растворителе, например толуоле или ксилоле, в присутствии пятиокиси фосфора. Позднее было показано, что в отдельных случаях лучшие результаты получаются при применении кипящего тетралина [8]. Деккер и сотрудники [9] установили, что эффективными конденсирующими средствами могут служить также хлорокись фосфора и пятихлористый фосфор. Реакция Бишлера—Напиральского обычно приводит к образованию изохинолинов с удовлетворительными выходами низкие выходы наблюдались сравнительно редко . При осуществлении синтеза применяются различные растворители и некоторые обычные конденсирующие агенты кислого характера [9]. С успехом используется полифосфорная кислота [1061 напротив, отрицательные результаты получены при применении концентрированной серной кислоты, трехфтористого бора и хлористого алюминия [11] о применении фтористоводородной кислоты сведений не имеется. Использование активированной окиси алюминия в кипящем декалине дает возможность получить 1-фенил-3,4-дигидроизохинолин (Н1) из М-бензоилфенетиламина (И) Лишь с низким выходом [11]. В реакции Бишлера—Напиральского с успехом применялись амиды более сложной структуры, имеющие заместители в ароматическом ядре и аминной части молекулы, а также и соединения с усложненным ацильным радикалом [12]. [c.265]

    Трудно дать общую рекомендацию о том, какой метод и когда следует применять. Можно лишь отметить, что чаще других используется химическое травление. Практика показала, что наилучшим— наиболее универсальным и надежным методом удаления продуктов коррозии со сплавов на основе железа (и даже для осветления поверхности микрошлифов) является обработка металла ингибированными кислотами. Вместе с тем отмечается [18], что для точного удаления продуктов коррозии со сплавов на железной основе при незначительной потере металла хорошие результаты дает описанная выше катодная обработка в щелочном растворе. Имеются также сведения [21], что катодное травление в растворе серной кислоты с ингибитором дает хорошие результаты при снятии продуктов коррозии с нержавеющ,ей стали после коррозии в воде при повышенных температурах и давлении. По этим же данным катодное травление в 2,5%-ном растворе Н2504 с добавкой 6 г/л уротропина при комнатной температуре предпочтительнее при снятии продуктов коррозии с 5%-ной хромистой стали по сравнению с травлением в щелочном растворе. [c.25]

    Числа эти нельзя считать теплотою нейтрализации, потому что вода здесь играет свою роль. Так, напр., серная кислота и едкий натр, растворяясь в воде, выделяют очень много тепла, а происходящая сернонатровая соль (представ. яя ее безводною), растворяясь в воде, выделяет тепла очень мало, следовательно, в безводном виде будут теплоты иными, в гидратном виде опять другими. Малоэнергические кис. оты, соединяясь с таким же количеством щелочей, как и при образовании средних солей серной или азотной кислот, дают однако всегда меньше тепла. Напр., с едким натром углекислота 10,2, синильная 2,9, сероводородная 3,9. А так как и слабые основания (напр., Ре-О ) выделяют тепла менее сильных оснований, то некоторое общее отношение между термохимическими сведениями и понятием о мере сродств выступает и здесь, как в других случаях, что однако не дает никакого права судить по теплоте образования солей в слабых растворах о мере сродств, связывающих элементы солей. Особенно ясно это из того, что вода может разлагать многие соли, а при их образовании выделяется тепло. [c.456]

    Имеются сведения об интенсивной коррозии теплообменников, спиральных холодильников, погружных насосов, кислото-проводов, газоходов, кислотосборников сернокислотных производств [26—27]. В частности, отмечено, что в течение трех лет было заменено десять спиральных холодильников из стали 08Х17Н13М2Т для охлаждения 92,5—94,5 %-й серной кислоты с 55 до 35 °С, а также холодильников из стали 06ХН28МДТ для охлаждения 98,3—98,5 %-й серной кислоты с 88 до 77°С. Наблюдались следующие виды коррозии значительное травление сварных швов кислотной камеры в зазоре кислотной камеры — растрескивание и межкристаллитная коррозия (МКК) основного металла, а также растрескивание сварного шва, глубина трещин в котором достигала 1,5 мм. Один из участков кислото-провода (92,5—94,5 %-я H2SO4, 35—40 °С) -имел интенсивные общие разрушения толщина стенки кислотопровода уменьшилась с 4,5 до 1,4 мм, в сварных соединениях наблюдались сквозные разрушения. [c.84]

    Частицы осадка, приставшие к стенкам стакана, в котором производилось осаждение, смывают частью прозрачного фильтрата. Как только последние капли маточного раствора пройдут через фильтр, сейчас же осадок промывают 5—10 мл воды (не более) когда эти промывные воды пройдут через фильтр, сейчас же вторично осадок промывают 5—10 мл воды, Прн этом методе работы, т. е. при сведении к минимуму количества промывных вод, совершенно отпадает отмеченный W. J. Mu 11 ег ом дефект, заключающийся в растворимости бензидинсульфата в промывной воде. Затем воронку вынимают из фильтровальной колбы, переворачивают, под нее помещают часовое стекло диаметром 50 — 60 мм и выталкивают фильтровальную пластинку вместе с фильтрами и осадком при помощи стеклянной палочки из воронки на часовое стекло. Пластинку отделяют, фильтр переносят в колбу Эрленмейера емкостью 250 мл с горлом диаметром 30 мм, часовое стекло и воронку споласкивают водой в количестве не свыше 25 мл. Затем колбу закрывают резиновой пробкой и сильно взбалтывают, пока не получится однородная масса из волокон бумаги и осадка, без комков бензидинсульфата. Содержимое колбы нагревают до 50° и титруют 0,1 н. едкой щелочью в присутствии фенолфталеина, при чем конец титрования должен происходить при кипячении, чтобы избежать действия на индикатор содержащейся в массе углекислоты. Возможный избыток едкого натра может быть оттитрован 0,1 н. кислотой. В общем, осадок бензидинсульфата значительно менее склонен к окклюзии посторонних солей, чем осадок BaSO . Описанным выше методом можно определить серную кислоту в свободном виде, а также в виде солей меди, закисного железа, никкеля, кобальта, цинка, марганца, алюминия и хрома, но не в виде солей окисного железа. В этом случае н жно предварительно осадить железо, как описано на стр. 10. Вредно влияет на определение присутствие ионов стронция, свинца, хрома и хромовой кислоты. [c.30]

    Общие сведения. Химический состав серной кислоты выражается формулой Н2504. Валентно-структурная Н-0 О [c.9]

    А1)А12(8104)з] и нозеан растворимы в кислотах эпсомит, глау-берит и ряд нормальных водных сульфатов растворимы в воде некоторые основные водные сульфаты, например алунит К2А1б(ОН)12(504)4, растворимы только в серной кислоте, но при прокаливании отдают воду и трехокись серы. Не касаясь сейчас специальных случаев, рассматриваемых в гл. УП1 (стр. 189), отметим, что определения серы могут быть следующие а) общая сера, включая бариты или целестин и нерастворимые основные сульфаты, т. е. алунит и натроалунит б) кислотнорастворимая сера, преимущественно в сульфидах в) серный ангидрид в растворимых в кислотах сульфатах. Так, если сера в породе присутствует в виде сульфидной формы (в пирите) и в виде нерастворимого барита, можно определить оба вида серы, выполнив определения а и б и взяв их разность. Такое определение обоих типов серы следует проводить, когда известно, что порода содержит как сульфидный минерал, так и значительное количество бария. Тогда можно вычислить, сколько бария присутствует в виде барита и сколько в виде силиката или, возможно, карбоната. Подобные сведения о минерале, в котором находится барий. [c.113]

    Методика синтеза изотопно-замещенных кислот (С1 и С1 ) [82]. Прибор представляет собой стеклянную вакуумную установку (рис. 62). Общий объем системы сведен к минимуму. Прибор присоединен через отвод 1 и трехходовой кран к масляному насосу, что позволяет вакуумировать обе секции установки. В месте 2 в установку может вводиться сухая углекислота или чистый азот (свободный от кислорода). После эвакуации системы в генераторе получают изотопно-замещенную углекислоту, прибавляя осторожно концентрированную серную кислоту (предварительно обезгашенную) к изотопно-замещенному карбонату бария. Краны смазывают смесью парафина и минерального масла. Количественного выделения двуокиси углерода достигают перемешиванием магнитной мешалкой и подогреванием. Газ пропускают через ловушку 3, опущенную в смесь сухого льда и ацетона, и конденсируют в приемнике 4 при помощи жидкого воздуха. Все неконденсирующиеся газы откачиваются насосом. Необходимое количество раствора и-бутиллития переводят сифоном 5 из реакционной колбы в в конический реактор 7, предварительно калиброванный. Реактор предварительно сушат, вакуумируя, обогревая голым пламенем, и заполняют чистым азотом. Раствор передавливают под небольшим давлением азота, пропуская его через фильтр из стеклянной ваты, вставленной в сифон 5. Капельная воронка 8 может охлаждаться снаружи смесью сухого льда и ацетона. В нее помещают эфщ)ный раствор исходного галоидного соединения. Этот раствор приливают к раствору к-бутиллития в реакторе 7 под азотом. Перемешивают умеренно при помощи Магниткой мешалки 9 (магниты 10). Сифон 11 служит для отмывания ароматических литийорганических соединений от -бутиллития. Тогда через сифон 11 с краном сливают растворитель в специальную эвакуированную колбу, погруженную в охлаждающую баню. Эфир для промывания выдерживают над натриевой проволокой в сосуде 12 и приливают через капельную воронку 8. [c.54]

    Однако такой упрощенный подход ограничен, так как в общем случае выброс массы из аппарата ие может быть сведен к статическому увеличению ее объема. Скорость парообразования достигает иногда больших значений. По нашим оценкам, для производственных условий исследованного в работе [1] взаимодействия ильменитового концентрата с серной кислотой [3, 4] она может достигать 6 м 1 м -мин), тогда как для слабого и сильного барбо-тажа расход газа составляет обычно 0,4 и 1,0 м 1 м мин) соответственно [5]. В реальных условиях нельзя также пренебрегать охлаждением через стенки. В связи с этим условие невозможности выброса может быть заменено условием невозможности интенсивного парообразования, а именно с1-01(1т < О, т. е. скорость кипения не должна возрастать. Тогда из уравнения (1) получаем следующее выражение  [c.49]

    Ионы тяжелых металлов, особенно свинца, уменьшают не только общую коррозию, но и локальную. Так, есть сведения, что малые добавки ионов свинца почти полностью подавляют коррозионное растрескивание нержавеющей стали под напряжением и в условиях активного растворения в серной и азотной кислотах [214]. При эффективных концентрациях ионов свинца (10- — 10- моль/л) равновесные потенциалы свинца отрицательнее стационарного потенциала нержавеющей стали и поэтому контактное выделение с образованием фазового осадка здесь исключено и на поверхности стали возникает лишь субмономолекулярный слой свинца. Природа этого процесса еще окончательно не выяснена, но реальность процесса несомненна [209 238]. [c.88]


Смотреть страницы где упоминается термин Общие сведения о серной кислоте: [c.46]    [c.265]    [c.133]    [c.457]    [c.2]    [c.273]   
Смотреть главы в:

Производство серной кислоты Издание 2 -> Общие сведения о серной кислоте




ПОИСК





Смотрите так же термины и статьи:

ОБЩАЯ ЧАСТЬ I V Глава I. КРАТКИЕ СВЕДЕНИЯ О СОСТАВЕ И СПОСОБАХ ПОЛУЧЕНИЯ СЕРНОЙ КИСЛОТЫ j Состав серной кислоты

Общие сведения Свойства серной кислоты

Общие сведения о серной кислоте Применение серной кислоты



© 2025 chem21.info Реклама на сайте