Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислородное определение

    Определенную опасность представляет временное использование кислородных баллонов под другие газы (азот, воздух и т. д.). Сам по себе возможный контакт этих газов с кислородом не представляет опасности. Однако учитывая, что эти газы сжимаются, как правило, поршневыми компрессорами, в кислородный баллон может попасть масло, которое с кислородом образует взрывоопасную среду. Кроме того, в кислородных баллонах (при использовании их не по назначению) может оказаться опасное количество жиров, лака, краски, растворителя, что также представляет опасность образования взрывоопасных смесей. [c.379]


    Опасность при эксплуатации кислородных баллонов, так же как и ВРУ, связана с возможностью утечки кислорода и образовав ния легковоспламеняющихся сред. Поскольку эксплуатация ВРУ и кислородных баллонов требует участия определенного числа лю дей, следует обратить внимание на возможность загорания одежды при насыщении ее кислородом. [c.381]

    Изучение состава нефтей и нефтяных дестиллатов затрудняется их сложностью и трудностью выделения из смесей многочисленных отдельных (индивидуальных) углеводородов. Помимо углеводородов нефти содержат кислородные и другие соединения, что еще в большей степени усложняет их исследование. Кроме того, при переработке нефтяного сырья образуется много новых углеводородов, не встречающихся в сырых нефтях. Предстоит выполнить еще значительную работу с целью определения строения сложных углеводородов и внесения большей ясности в существующие представления о химических превращениях их. [c.13]

    Аппарат для определения длительности индукционного периода (рис. 133) представляет собой бомбу для окисления, состоящую из корпуса 1, крышки 2 и головки последняя включает в себя грибок 3, тройник 4 с боковыми штуцерами 5 (нижним), 6 (верхним), вентиль 7 с игольчатым клапаном 8 п воротком 9. Бомба соединяется с кислородным манометром трубкой из углеродистой стали. [c.77]

    Вблизи концентрационных пределов, когда стационарное распространение детонационной волны лимитируется скоростью химической реакции, обусловливающей самовоспламенение смеси, на положение пределов существенно влияют активные присадки, не изменяющие термических свойств смеси [158]. В то же время эти активные присадки не оказывают заметного влияния на скорость стационарного распространения пламени. Так, например, не было обнаружено изменения скорости распространения детонационной волны в углеводородо-кислородной смеси при введении в нее небольших количеств тетраэтилсвинца. Эти наблюдения свидетельствуют об определенных различиях механизмов возбуждения детонационной волны и ее распространения. [c.143]

    На температуру самовоспламенения оказывают влияние катализаторы, ими могут являться стенки сосудов, с которыми соприкасается газовая смесь, а также окалина и некоторые другие вещества. Воспламенение метано-кислородной смеси во всех случаях происходит по истечении определенного времени — периода индукции (задержки воспламенения). [c.26]

    Горение метано-кислородной смеси возможно только при определенном соотношении концентраций компонентов. Отношение О2 СН4 является основной технологической характеристикой процесса. Чем меньше это отношение, тем меньше потребляется кислорода, т. е. целесообразнее выбранный режим. Однако уменьшение этого соотношения возможно лишь до определенных пределов. [c.52]


    В производстве ацетилена при нагревании до высоких температур газовых реагентов (природный газ, кислород) в случае аварии, например прогорания труб подогревателей, возможны образование взрывоопасных смесей, расплавление футеровки аппаратов и т. д. Для безопасного нагревания природного газа необходимо ограничивать этот процесс определенными температурными пределами, так как при высоких температурах может протекать крекинг метана до образования сажи. В свою очередь, наличие сажи может вызвать преждевременное горение метано-кислородной смеси, забивку трубопроводов и т. д. Заметное разложение метана наблюдается при 690—750 " С, поэтому его нагревают обычно до температуры не выше 700 °С. [c.95]

    Однако, несмотря на некоторые недостатки, метод определения длительности индукционного периода окисления в кислородной бомбе нашел широкое применение в отечественной и зарубежной практике контроля качества автомобильных бензинов. [c.220]

    Если в области изучения первичных продуктов окисления и направлений их распада есть определенный экспериментальный материал и сформулированы основные закономерности, то процессы дальнейшего превращения продуктов окисления в смолистые вещества совершенно не исследованы. Данные об элементарном составе, величина йодного числа и наличие функциональных групп свидетельствуют о том, что смолистые вещества образуются в результате окислительной полимеризации и окислительной конденсации продуктов распада гидроперекисей с участием неуглеводородных примесей. Среди неуглеводородных составляющих бензинов наибольшее значение для процессов окисления имеют кислородные и сернистые соединения. [c.225]

    Теоретическая температура продуктов сгорания зависит от концентрации кислорода в окислителе и топлива в смеси (рис. 4.10, 4.11). Для приближенного определения теоретической температуры продуктов сгорания углеводородно-кислородных смесей при а=1 можно рекомендовать следующие соотношения  [c.126]

    Коррозия большинства металлов в нейтральных растворах (в воде и водных растворах солей) протекает с кислородной деполяризацией и ее скорость сильно зависит от скорости протекания катодной реакции ионизации кислорода и подвода кислорода к корродирующей поверхности металла, в то время как влияние рн растворов в нейтральной области (pH 4- -10) незначительно или даже отсутствует (например, для железа, цинка, свинца и меди 13 интервале pH = 4- -]0 7- -10 б- - В 5- И соответственно). Последнее обусловлено тем, что труднорастворимые продукты коррозии каждого из этих металлов устанавливают определенное значение pH раствора у поверхности корродирующего металла и коррозия происходит практически при одном и том же значении pH. [c.343]

    Кинетику коррозии металлов с водородной или кислородной деполяризацией можно исследовать непрерывно при помощи объемных показателей, применяя для этого объемные методы. На рис. 335 приведен общий вид установки для определения скорости коррозии металлов с водородной деполяризацией по объему выделяющегося водорода. Заполнение бюреток в начале опыта и при их периодической перезарядке в процессе испытания осуществляется засасыванием коррозионного раствора с помощью водоструйного насоса. [c.448]

    На рис. 336 изображена схема простого прибора Г. В. Акимова и И. Л. Розенфельда для определения скорости коррозии металлов с кислородной деполяризацией по объему поглощенного кислорода, определяемого по подъему столбика подкрашенного раствора в соответствующем колене манометрической трубки. [c.448]

    Видно, что и в преимущественном размещении метильных групп в положениях 1- п 8-просматриваются определенные аналогии в структуре трициклических кислородных и сернистых соединений нефти. [c.112]

    Описаны и другие упрощенные методы. Все они едва ли имеют большое значение для определения теплот образования или теплот, сгорания алканов при наличии более точных и не слишком слож- ных методов расчета. Однако при переходе к непредельным угле- водородам и другим классам органических соединений более точные методы сильно усложняются и требуют большего числа исходных данных. Несмотря на отдельные более или менее успешные разработки путей расчета свойств некоторых групп непредельных углеводородов и нормальных первичных спиртов, распространение этих методов на другие классы соединений до сих пор встречает серьезные затруднения. Это объясняется не только увеличением числа видов связи, но и влиянием кратных и полярных связей с кислородным атомом на соседние связи, вследствие чего учет состояния только ближнего окружения становится недостаточным, в этих условиях приобретает практическое значение разработка упрощенных методов. [c.255]

    К. И. Иванов [82] отмечает, что возможно воздействие на протекание реакций окисления минеральных (зольных) составных частей остатка. Кислотный характер устойчивых кислородных соединений в остатке прослеживается при определении знака заряда поверхности кокса, полученного из окисленного остатка. Разукрупнение молекул, происходящее в результате кислородной деструкции, отражается на истинной плотности, механических и электрических свойствах получаемого кокса. [c.33]


    Каждый баллон предназначен только для определенного газа. Поэтому введена строгая маркировка баллонов путем окраски их в разные цвета, с нанесением цветных полос и надписей. Например, кислородные баллоны окрашиваются в голубой цвет с надписью черной краской кислород , ацетиленовые— в белый цвет с надписью красной краской ацетилен и т. п. Боковые штуцеры вентилей для баллонов с горючими газами делают с левой резьбой, а для кислорода и негорючих газов — с правой, чем предотвращается присоединение к баллону редукторов, не соответствующих находящемуся в нем газу, а следовательно, подача кислорода в линию горючего газа и наоборот. [c.308]

    Влагоемкость. Воздушносухой уголь содержит еще определенное количество влаги в зависимости от концентрации полярных кислородных групп на поверхности и ее величины. Коксующиеся угли, более бедные кислородом и с относительно низкой удельной поверхностью, содержат немного влаги (2—3% против 5—7% в длиннопламенных углях). [c.28]

    Поскольку производство перекиси водорода совместно с органическими кислородными соединениями и пропиленом по-прежнему продолжает представлять интересе промышленной точки зрения, реакция окисления пропана в определенных условиях снова была подробно изучена Саттерфилдом, Уилсоном и др. [25]. [c.442]

    При нитровании пропана в присутствии смесей кислорода и хлора, когда последний берут в концентрациях, усиливающих кислородный эффект, содержание 2-нитропропана в продуктах реакции уменьшается, содержание 1-нитропропана увеличивается, а нитроэтаи получается почти в тех же количествах. При отношении хлора к углеводороду, равном 1 100, концентрация нитрометана достигает максимума. Из всех этих опытных данных видно, что определенные мероприятия могут существенно повлиять на состав продуктов газофазного нитрования парафиновых углеводородов. [c.572]

    Количественное определение кислородных групп различного типа в смеси описано в работе Сейер и Хадж [198]. По поглощению в определенных областях спектра одновременно определяются алифатические спирты, кислоты, альдегиды, кетоны, простые и сложные эфиры  [c.146]

    На участках налива и слива аммиака должны находиться в полной готовности и исправности кислородные приборы, противогазы марки КД, прорезиненные костюмы,, резиновые сапоги и перчатки, набор необходимого инструмента и определенный запас прокладок, заглущек, пробок, болтов, гаек и др. [c.82]

    Валентность кислорода, как правил , равна двум. Поэтому, зная состав или формулу кислородного соединения того или иного элемента, можно определить его вал ентность как удвоенное числа атомов кислорода, которое может присоединить один атом данного элемента. Определенная таким образом валентность называется валентностью элемента в кислородных соединениях или валентностью по кислороду так, в соединениях N2O, СО, ЗЮг, SO  [c.35]

    В 1961 г. Карватом и Клейном [25] были проведень опыты по определению температуры воспламенени древесины в воздухе и кислороде при атмосферном дав лении. Ниже приведены температуры воспламенени древесины в кислородной среде, °С  [c.66]

    В связи с предположением о самовоспламеняемости прокладочных материалов как одной из причин взрывов и пожаров в кислородных машинах и арматуре в 1966 г. во ВНИИкимаше Б. А. Ивановым и др. было проведено исследование по определению температуры самовоспламенения прокладочных и некоторых других материалов в среде газообразного кислорода при давлении до 3,5 Мн/м (35 кГ/см ). [c.67]

    При определенном смещении потенциала в отрицательную сторону на катоде может начаться какой-либо новый процесс. В водных растворах таким процессом обычно является разряд водородных ионов, обратимый потенциал которого более чем на 1 В отрицательнее обратимого потенциала процесса ионизации кислорода. При достижении обратимого потенциала водородного электрода в данном растворе (УнЛобр на процесс кислородной деполяризации начинает накладываться процесс водородной деполяризации [кривая (УнЛобр - на рис. 159] и общий процесс катодной деполяризации будет соответствовать кривой (Уо,)обр АСОЕК на рис. 159, которую называют общй кривой катодной поляризации. [c.242]

    В молекулярных (низковольтных) масс-снект-р а X низкого разрешения преобладают пики молекулярных ионов, что позволяет рассчитывать по этим спектрам групповой состав исходной смеси. Число групп соединений,поддающихся определению этим методом, ограничено. Члены гомологических рядов углеводородов H2 +z, сернистых, С Нгп+гй.л и кислородных nHin+zO,j соединений имеют четные молекулярные массы. В масс-спектрах соедпнений каждого из этих трех классов пики членов разных гомологических рядов, величины z в формулах которых различаются па 14 единиц, взаимно налагаются. В результате в молекулярных масс-спектрах смеси соединений этих классов можно выделить не более 7 серий четных величин т/е, характеризующихся значениями 2 = 2—14р, —i p, —2—14р, —4—14р, —6— 14р, —8—14/7, —10—14р, где = О, 1, 2, 3 и т. д. Ясно, что величины Z для сернистых и кислородных соединений не равны значениям z в рядах изобарных им углеводородов (например, при X — у = i первые ниже на 4 и 2 единицы соответственно). [c.36]

    Опубликовано значительное число работ, в которых определялись основные термодинамические функции отдельных кислородных органических соединений, а также соединений, содержащих галогены или азот. Многие из них приведены в указанных выще книгах А. А. Введенского и Н. В. Лаврова, В. В. Коробова и В. И. Филипповой , в таблицах Ландольта — Бернштейнаи в справочнике под редакцией В. П. Глушко . Из результатов, не вошедших в эти издания, можно назвать данные, полученные Грином по определению свойств нормальных первичных алкоголей до С12 включительно для температур от 298 до 1000 К и критическую сводку данных о .H° и А(7 различных кислородных органических соединений при 298,15 К. [c.81]

    Все описанные соотношения справедливы не только для кислородсодержащих соединений. Так, для углеводородов применимы те же соотношения, но число атомов кислорода принимается равным нулю. Для соединений, содержащих серу, азот, фосфор, в уравнении (VI,1) постоянство суммы теплот образования и теплот сгорания сохраняется, но в правую часть уравнения входит новый член, представляющий теплоту сгорания перечисленных элементов (точнее говоря — соответствующих простых веществ). Конечное состояние продуктов сгорания в этом случае принимается иногда условно. Здесь важно лишь, чтобы это состояние было одинаковым конечным состоянием, принятым при определении теплоты сгорания данного соединения. Одинаковыми должны быть и исходные состояния данного элемента в реакции, к которой относится теплота сгорания простого вещества, и в реакции образования рассматриваемого соединения нз простых веществ. Практически это замечание относится главным образом к сере, так как для нее параметры реакций образования и, в частности, теплоту образования -в настоящее время часто относят к исходному состоянию ее в виде газа с двухатомными молекулами, 5г(г). Хотя стандартное состояние такого газа в обычных условиях физически нереализуемо, термодинамически оно определено достаточно хорошо, а использование параметров его в качестве вспомогательных расчетнь1х величин дает возможность при выражении влияния температуры на параметры реакций образования избежать искажающего влия ния изменений агрегатного состояния серы при повышенных температурах. К тому же при сопоставлении серусодержащих соединений с аналогичными кислородными соединениями параметры реакций образования с участием 5г(г), естественно, показывают более закономерные соотношения, чем параметры реакций образования с участием серы ромбической. [c.210]

    Подобные же определения были выполнены этими исследователями для кислородных соединений (спиртов и простых эфиров). Полученные значения инкрементов для ЛЯа. 298 и АЯ . 293 рассматриваемых соединений в газообразном и жидком состояниях приведены в табл. VI,29, причем для алкантиолов, тиаалканов и ди-тиаалканов теплоты образования из простых веществ относятся к состоянию серы в виде ромбической [а не S2 (г)]. При использовании инкрементов для теплот атомизации надо учитывать, что они рассчитаны при следующих значениях теплот атомизации (в ккал) простых веществ (они большей частью отличаются от значений, приведенных в табл. VI, 1)  [c.256]

    Расхождение между значениями, рассчитанными на основе этих инкрементов и определенными по экспериментальным данным, не превышает 1,1 ккал/моль для спиртов и еще меньше для серусо-держащнх соединений. (Правда, эти же вещества были использованы при расчете инкрементов.) Грин отмечает, что для некоторых из кислородных соединений значения АЯ/, 2Э8, применявшиеся авторами, несколько отличаются от наиболее вероятных в настоящее время. Судя по работе это в небольшой степени относится и к некоторым серусодержащим соединениям. Впрочем, здесь расхождения не выходят за пределы точности самого метода, который является все же весьма приближенным, в особенности для кислородных соединений, так как высокая полярность связей С—О и [c.256]

    Определенные вещества, используемые для пожаротушения, при избытке кислорода в процессе тушения могут образовывать токсичные вещества, которые будут находиться в паровой фазе. Автор знает случаи, когда была предпринята попытка погасить кислородный пожар с помощью тетрахлорида углерода. В результате рабочий, проводивший эту операцию, был отправлен в больницу с отравлением. Опубликовано руководство [H SE,1985а] по пожарам и взрывам при неправильном обращении с кислородом. [c.445]

    Парахор практически не зависит от температуры (в пределах 200°). Если в формуле (XVIII. 9) ст = 1, то Р = Уц, т. е. парахор равняется молекулярному объему Уи при такой температу])е, при которой ст = 1. Парахор обладает большим сходством с молярной рефракцией. Он может вычисляться как из приведенных формул, так и из химического строения молекулы [222]. Каждый атом в молекуле имеет определенную величину парахора, называемую инкрементом, причем такими же инкрементами обладают двойные и тройные связи и различные кольца. Молярный парахор получается сложением инкрементов всех атомов, связей и 1солец, имеющихся в молекуле. Парахор смесей обладает свойствами аддитивности. Как показали работы Мардера [232], в присутствии незначительных примесей кислородных и сернистых соединений свойства аддитивности углеводородных смесей моторных топлив не нарушаются. [c.489]

    При использовании для количественного определения непредельных углеводородов способа йодных и бромных чисел и среднего молекулярного веса приходится считаться с обязательным арисутствием в крекинг-бензине диолефинов и циклодиенов, в результате чего вычисленное по этому методу содер>кание непредельных углеводородов будет ошибочным, величина ошибки будет зависеть от содерн<апия в бензине диенов. То же самое можно сказать и о так называемом способе кислородных чисел, предложенным Наметкиным [244]. [c.505]


Библиография для Кислородное определение: [c.351]   
Смотреть страницы где упоминается термин Кислородное определение: [c.76]    [c.306]    [c.35]    [c.179]    [c.296]    [c.61]    [c.231]    [c.43]    [c.69]    [c.293]    [c.505]    [c.134]   
Смотреть главы в:

Катализ - исследование гомогенных процессов -> Кислородное определение




ПОИСК







© 2025 chem21.info Реклама на сайте