Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика реакций гидратации и дегидратации

    IV. КИНЕТИКА РЕАКЦИЙ ГИДРАТАЦИИ И ДЕГИДРАТАЦИИ [c.246]

    В 1955 г. Чирков и Цветкова [39] подробно исследовали кинетику гидратации пропилена и дегидратации изопропилового спирта на пленочном фосфорнокислотном катализаторе. В результате работы было показано, что в интервале температур 90— 140°С при суммарном давлении реагентов не выше атмосферного скорости гидратации пропилена и дегидратации изопропилового спирта описываются уравнением для обратимой мономолекуляр-ной реакции. Оказалось, что константы скорости дегидратации спирта, найденные из опытов по гидратации пропилена и дегидратации изопропилового спирта, близки друг к другу. Это указывает на детальную обратимость процесса, которая в свою очередь ограничивает число мыслимых механизмов протекания этого процесса. Авторами установлен характер зависимости констант скорости гидратации пропилена к и дегидратации спирта 2 от функции кислотности катализирующей среды Яо (функции Гаммета)  [c.268]


    Обратимая реакция гидратации — дегидратации фумарат малат катализируется ферментом фумаразой. Были тщательно исследованы кинетика и механизм действия кристаллической фумаразы, выделенной из сердца свиньи. Этот фермент с молекулярным весом 2,2.10 состоит из четырех одинаковых полипептидных субъединиц (мол. вес. 48,5-10 ). Для протекания реакции никаких кофакторов не требуется, но эксперименты четко указывают на участие в реакции кислого (т. е. протонированного) и основного (депротонированного) остатков. Их значения при ионной силе [c.356]

    Заметим, что Чирков и Цветкова в цитируемой работе [39], а также Чирков и сотрудники [40] в других работах, рассматривая кинетику и механизм реакций на кислотных катализаторах, устанавливают общность ряда различных процессов, а именно процессов гидратации, дегидратации, полимеризации и изомери- [c.268]

    Научные работы относятся к химической кинетике н органическому катализу. Исследовал химию фосфора и его соединений. Изуча.л (193 0—1940) термодинамику и кинетику реакций каталитического превращения углеводородов с целью совершенствования промышленных методов переработки нефти. Установил количественные закономерности, связывающие константы скорости реакций с параметрами, характеризующими катя-лизатор, термодинамическими условиями и макрокинетическими факторами. Рассчитал условия равновесия реакций гидрирования и дегидрирования, гидратации олефинов и дегидратации спиртов, синтеза метана. Вывел кинетическое уравнение для каталитических )еакций в струе. Исследовал связь каталитической активности алюмосиликатных катализаторов с их составом, способом приготовления, кристаллической структурой. Разрабатывал статистические методы расчета термодинамических величин. [211, 290] [c.532]

    Первым на возможность медленного протекания такой электрохимической стадии указал Р. А. Колли (1880). Большое значение для понимания причин, обусловливающих конечную скорость этого акта, имели работы Леблана (1910) и Н. А. Изгарышева (Ш ), привлекшие внимание электрохимиков к той важной роли, которую играют явления гидратации и дегидратации ионов в кинетике электродных процессов. Н. И. Кобозев и Н. И. Некрасов (1930 на примере реакции катодного выделения водорода впервые показали, что состояние частиц, в котором они находятся непосредственно после акта разряда, может существенно отличаться от состояния конечных продуктов электродной реакции. Скорость актов разряда и ионизации для реакции катодного выделения водорода, была измерена П. И. Долиным, Б. В. Эршлером и А. Н. Фрумкиным (1940). [c.359]


    Процессов, в комбинации с восстановительными реакциями в неводных средах реакционная акваметрия дает возможность более селективно определять некоторые функциональные группы. Акваметрия применена для выяснения строения глобулярных белков через изучение кинетики процесса их гидратации и дегидратации, а также для определения влажности катализаторов и сорбентов. [c.130]

    Замедленная химическая реакция может либо протекать в тонком слое жидкости у поверхности электрода, либо, как это часто встречается, представляет собой гетерогенную реакцию в адсорбционном поверхностном слое. В последнем случае обычно наблюдается плохая воспроизводимость опытов. Как и вообще в химической кинетике при гетерогенной реакции стадиями, определяющими скорость реакции и тем самым перенапряжение реакции, могут быть либо процесс адсорбции, либо собственно химическая реакция в адсорбционном слое, либо, наконец, десорбция продукта реакции. К этоII группе гомогенных или гетерогенных реакций относятся реакции образования или диссоциации комплексных соединений. К этой же группе можно причислить гомогенные или гетерогенные реакции гидратации — дегидратации ионов, которые могут быть замедленной стадией общего процесса и тем самым обусловливать появление перенапряжения реакции. Наиболее известным примером замедленной гетерогенной реакции является замедленная рекомбинация Н-атомов, предложенная Тафелем для объяснения результатов, полученных при исследовании катодного выделения водорода. [c.261]

    Механизм и кинетика реакций. Все рассматриваемые реакции принадлежат к числу кислотно-каталитических процессов. Типичными катализаторами гидратации являются достаточно сильные протонные кислоты фосфорная кислота на носителе, поливольфрамовая кислота, сульфокатиониты. Для дегидратации используют фосфорную кислоту на носителе, оксид алюминия, серную кислоту, фосфаты (например, СаНР04) и др. Роль катализаторов при гидратации состоит в протонировании олефина через промежуточное образование л- и ст-комплексов, причем обратная реакция дегидратации идет через те же стадии, но в противоположном направлении  [c.174]

    Алифатические альдегиды в водном растворе в значительной степени гидратированы. Хотя при обычных температурах скорость процесса велика, первоначальные исследования тепловыделения и изменения плотности, которые сопровождают-растворение ацетальдегида в воде [150], показали, что равновесие в системе устанавливается через несколько минут. Эта реакция протекает очееь быстро в водном растворе при комнатной температуре, особенно в присутствии катализаторов. Впервые Белл и Хиггинсон [151] провели систематическое изучение гидратации альдегидов в смешанном растворителе, содержащем 92,5% ацетона. Реакцию инициировали добавлением большого избытка ацетона к концентрированному раствору ацетальдегида, контролируя процесс дегидратации с помощью измерения объема. В качестве катализаторов были исследованы 52 кислоты (при 25 °С). Авторы дали качественное доказательство катализа основаниями. Недвусмысленные, доказательства механизма общего кислотно-основного катализа были получены в результате дилатометрических из-, мерений в водных буферных растворах [152]. Более детальные кинетические эксперименты были выполнены [153, 154] с помощью метода температурного максимума, пригодного для изучения реакций с полупериодом 1 с или меньше. Аналогичные исследования механизма кинетики реакций других алифатических альдегидов проводились с использованием либо метода температурного максимума, либо ультрафиолетовой спектроскопии карбонильной группы [155, 156]. Некоторые из полученных кинетических результатов подтверждаются данными об уширении линий в спектрах ЯМР (например, линий протонов групп СН или СНз в молекуле СН3СНО) в присутствии катализаторов [157—159]. Недавно возможности метода были расширены в направлении применения анализа уширения линий сигнала ядра О карбонильной группы [160].. [c.217]

    Весьма игггересные во многих отнонюниях реакции гидратации олефинов и дегидратации спиртов, относящиеся к классу кислотно-основных процессов, протекают с большей или меньшей легкостью в присутствии ] ислот разнообразных концепт])аций. Кинетика отих реакций изучалась главным образом в области разбавленных растворов кислот [23]. [c.516]

    В промышленности широко используется проведение реакций в струе газа, проходящего через реактор, который может быть или пустым, играя роль только области, где поддерживается постоянная температура, или заполненным слоем зер-неного катализатора. Примерами реакций, осуществляемых в потоке в промышленных масштабах, могут служить реакции термического и каталитического крекинга нефтепродуктов, каталитического алкилирования, иолимеризации, гидро- и дегидрогенизации углеводородов, дегидратации и дегидрогенизации спиртов, гидратации олефинов, галоидирования, нитроваиия охислами азота, синтеза аммиака, получения серной кислоты контактным способом, синтеза моторного топлива н т. п. Поэтому и лабораторные опыты по изучению кинетики многих в.ажных широко применяемых в промышленности реакций проводятся также в потоке. Вследствие того, что реакции этого типа проводятся обычно при постоянном давлении и сопровождаются в большинстве случаев изменением объема участвующих в реакции веществ, уравнения кинетики этих процессов должны отличаться от уравнений, выведенных выше для условия ПОСТОЯННОГО) объема. Кроме того, и сам метод расчета кон-стаит скоростей реакций, протекающих в потоке, должен отличаться от методов расчета констант скоростей реакций,осуществляемых при постоянном объеме, так как очень трудно определить время пребывания реагирующих веществ в зоне реакции (так называемое время контакта). [c.48]


    ТА воздушный термостат, в котором температура поддерживалась постоянной с точностью 0,2°. Концентрация кислоты в пленке могла меняться посредством впуска разных количеств воды из колбы 5, в которой находилась вода, предварительно очищенная от летучих примесей тщательной откачкой. После достижения нужной концентрации кислоты, о чехм судили по установлению соответствующей упругости пара, в опытах по гидратации в реакционную колбу впускался из газометра пропилен, а в опытах по дегидратации из колбы 6 — впускался предварительно тщательно абсолютированный металлический натрием или кальцием изопропиловый спирт. Колбы 5 VI 6 помещались в нагретую водяную баню. Давлепие реагентов измерялось ртутным манометром 7. За ходом процесса следили по росту давления при дегидратации и по уменьшению давления при гидратации. Изменение давления измерялось при помощи дифференциального манометра 8. При изучении кинетики гидратации, где изменения давления малы, использовался манометр с расширенным коленом, что позволяло делать отсчеты через 1 мм. При малых изменениях давлепия отсчеты производились при помощи катетометра. По окончании опыта продукты реакции конденсировались в охлаждаемой жидким азотом ловушке 10. [c.590]

    Исследование кинетики гидрата]щи олефинов и дегидратации спирта в присутствии фосфорной кислоты в значительной степени осложняется тем, что вода является и реагентом и составной частью катализатора. Это приводит к тому, что как нри изменении начальных давлений реагентов, так и в ходе процесса может меняться каталитическая активность кислоты. Например, вступление воды в реакп ию при гидратации пропилепа должно приводить к увеличению концентрации кислоты.. Однако расчет показывает, что в условиях проведения опытов (4,5 г НдРО , свободный объем реакционной колбы — 1,97 л), благодаря малой степени превращения, количество воды, вступающей в реакцию при гидратации пропилепа, мало по сравнению с количеством ее, содержащимся в кислоте, и концентрация кислоты меняется в ходе опыта пе более, чем на 1%.В этом случае дифференциальное уравнение для скорости образования сиирта [c.591]

    Каталитическое влияние оснований на скорость дегидратации геуи-гликоля приводит к тому, что с ростом pH раствора скорость электродного процесса, ограниченного кинетикой этой реакции, возрастает. Часто гидратация осложняется протолитическими явлениями. Например, при гидратации формальдегида в сильнощелочной среде происходит кислотная диссоциация гидратированной формы — метиленгликоля [143], что приводит к очень сложной зависимости скорости электродного процесса от pH раствора. На рис. 14 в качестве примера приведена зависимость тока восстановления изомеров триметил-у-иииеридона [144] от pH раствора, полученная на ртутном капельном электроде. Восстанавливаются на электроде только дегидратированные по группе С = 0 и про-тонированные по азоту молекулы пиперидонов, поэтому с ростом pH из-за увеличения концентрации оснований-катализаторов и, следовательно, из-за повышения скорости дегидратации ток сначала увеличивается, однако затем при переходе к щелочным растворам вследствие уменьшения скорости протонизации по атому азота ток падает. В случае 1, 1-диметил-у-пиперидона, у которого [c.52]

    Из наклона кривой на рис. 2 вытекает, что лимитирующей скорость процесса химической реакцией в данном случае является не катализируемый ионами гидроксония переход дикетоформы 1а в епольную 16 [14]. С другой стороны, обратная пропорциональность высоты диффузионного тока квадратному корню вязкости водно-спиртового раствора и постоянство спектрального коэффициента погашения для максимума дикетоформы 2-фенилиндандиона-1,3 в кислой среде при различном содержании спирта в водно-спиртовых смесях исключает возможность гидратации или образования ацеталей [15] и, следовательно, кинетика дегидратации не должна отразиться на характере полярографических волн. Рассчитанные значения констант скорости рекомбинации енолят-анионов 1в по атому кислорода /с по порядку величины соответствуют тем константам скорости, которые найдены полярографическим путем для рекомбинации анионов карбоновых кислот [16, 17], а также иным путем [18] для рекомбинации анионов Р-дикетонов (димедона и т. д.). [c.121]


Смотреть страницы где упоминается термин Кинетика реакций гидратации и дегидратации: [c.90]    [c.184]    [c.589]    [c.130]    [c.316]    [c.81]    [c.910]   
Смотреть главы в:

Новые проблемы физической органической химии -> Кинетика реакций гидратации и дегидратации




ПОИСК





Смотрите так же термины и статьи:

Дегидратация

Реакция гидратации

Реакция дегидратации



© 2025 chem21.info Реклама на сайте