Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химически активные группы в нативных белках

    Изучение структурной самоорганизации позволило сформулировать фундаментальное положение о том, что конформация белковой молекулы отвечает термодинамически равновесному состоянию и, как таковое, не зависит от конкретных внешних условий свертывания белковой цепи (in vivo, in vitro или с помощью шаперонов) и от ее предыстории, т.е. способа получения (биосинтез или химический синтез). Конечная пространственная структура определяется исключительно составом и порядком расположения аминокислот в последовательности. Было доказано, что все необходимые сведения о физиологически активной форме белка заключены в его химическом строении. Трансляция линейной информации в трехмерную структуру возможна, однако только при вполне определенных физиологических условиях (температура, давление, pH, ионная сила, присутствие простетических групп, ионов металла). При их соблюдении сборка осуществляется спонтанно в том смысле, что принятие белком своей равновесной нативной конформации не требует специального [c.81]


    Денатурация белка в классическом смысле определялась как любая непротеолитическая модификация уникальной структуры нативного белка, приводящая к определенным изменениям химических, физических и биологических свойств [388]. Из этого определения исключаются изменения состояния ионизации, если только они не сопровождаются конформационными переходами. Денатурация может происходить в результате нагревания, изменения pH и добавления неполярных растворителей или некоторых специфических денатурирующих реагентов, например мочевины или солей гуанидина. Она также может быть вызвана восстановительным или окислительным разрывом дисульфидных связей, которые стабилизуют нативные конформации некоторых белков. Денатурация, как правило, сопровождается уменьшением растворимости белка. Это можно легко понять, так как гидрофобное взаимодействие, стабилизующее нативную конформацию, приводит к межмолекулярной агрегации, если полипептидные цепи принимают вытянутые конформации. Другим характерным последствием денатурации является раскрытие реакционноспособных групп, которые расположены внутри третичной структуры и становятся доступны воздействию реагентов при разрушении этой структуры. К числу наиболее пригодных методов наблюдения за процессами денатурации принадлежат спектроскопические измерения, измерения оптической активности и определение каталитической активности ферментов или биологической активности гормонов. Конформационные переходы при денатурации включают ряд процессов, которые в различной степени могут сказываться на каждом из наблюдаемых изменений, и поэтому понятие степени денатурации бессмысленно, если не будет установлен критерий, с помощью которого денатурация измеряется. Эта точка зрения иллюстрируется рис. 44, на котором изображено изменение оптической активности, поглощения света и ферментативной активности рибонуклеазы [389]. [c.136]

    Наряду с сульфгидрильными и дисульфидными группами при денатурации белков наблюдается увеличение реактивности и других химически активных групп. Так, в нативном яичном альбумине с динитрофторбензолом реагируют 3 е-аминогруппы лизина, тогда как при денатурации число таких групп увеличивается до 9. В случае -лактоглобулина было найдено, что все 31 е-аминогруппы лизина ацетилируются кетеном, но лишь 19 реагируют с динитрофторбензолом. При денатурации нагреванием, спиртом и солянокислым гуанидином все е-аминогруппы становятся реактивными. Тот факт, что все е-аминогруппы могут ацетилироваться и что только некоторые из них реагируют с динитрофторбензолом, указывает на экранирование части этих групп складками полипептидных цепей. [c.189]


    Химически активные группы в нативных белках 273 [c.273]

    ХИМИЧЕСКИ АКТИВНЫЕ ГРУППЫ В НАТИВНЫХ БЕЛКАХ [c.273]

    Освобожденный по возможности от белков крови путем многократных переносов в аминокислотах (преимущественно в гликоколе) тушитель проявляет свойства сравнительно высокомолекулярного пептида. Он не диффундирует через коллодийную пленку, прохождение через которую так же, как введение в клетки, может быть достигнуто только путем электрофореза, и термо-лабилен. Спектральный анализ селективного рассеяния указывает, как мы знаем, на наличие в его составе лактимной формы пептидной связи. Тушитель заряжен отрицательно и сохраняет свой заряд в широком диапазоне pH. Путем осторожного гидролиза можно отделить от молекулы тушителя активную группу, отличающуюся по своим физико-химическим показателям от нативной молекулы. Она термостабильна, не несет заряда, не самовоспроизводится в аминокислотах и легко проникает в клетки, однако лактимная форма пептидной связи в ней полностью сохраняется. [c.219]

    Обнаружено, что существенная для связывания карбоксильная группа субстрата образует солевой мостик с гуанидиновой группой аргинина-145, тем самым, а также предпочтительными положениями связывания боковых радикалов, приводя подлежащую расщеплению амидную связь в контакт с атомом 2п. Теперь единственными другими функциональными группами, близкими к этой амидной связи, являются карбоксильная группа глутаминовой кислоты-270, которая (как и аргинин) сдвигается на 0,2 нм по сравнению со свободным ферментом, и фенольный гидроксил тирозина-248. Последняя группа не является одной из пяти групп, которые, как полагают, обычно участвуют в ферментативном катализе. Имеются также химические доказательства важности тирозина в карбоксипептидазе. Примечательно наблюдение, что эта группа не содержится вблизи цинка активного центра нативного фермента. Связывание глицил-тирозина, однако, вызывает весьма существенный конформационный сдвиг, в процессе которого фенольная группа тирозина-248 сдвигается не менее, чем на 1,2 нм с поверхности белка к новому положению вблизи пептидной связи субстрата. В результате этого движения происходит закрывание углубления, в котором находится активный центр, так что последний, по-видимому, не находится более в равновесии с растворителем. [c.502]

    Пространственная структура зависит не от длины полипептидной цепи, а от последовательности аминоютслотных остатков, специфичной для каждого белка, а также от боковых радикалов, свойственных соответствующим аминокислотам. Пространственную трехмерную структуру или конформацию белковых макромолекул образуют в первую очередь водородные связи, а также гидрофобные взаимодействия между неполярными боковыми радикалами аминокислот. Водородные связи играют огромную роль в формировании и поддержании пространственной структуры белковой макромолекулы. Водородная связь образуется между двумя электроотрицательными атомами посредством протона водорода, ковалентно связанного с одним из этих атомов. Когда единственный электрон атома водорода участвует в образовании электронной пары, то протон притягивается соседним атомом, образуя водородную связь. Обязательным условием образования водородной связи является наличие хотя бы одной свободной пары электронов у электроотрицательного атома. Что касается гидрофобных взаимодействий, то они возникают в результате контакта между неполярными радикалами, неспособными разорвать водородные связи между молекулами воды, которая вытесняется на поверхность белковой глобулы. По мере синтеза белка неполярные химические группировки собираются внутри глобулы, а полярные вытесняются на ее поверхность. Таким образом, белковая молекула может быть нейтральной, заряженной положительно или же отрицательно в зависимости от pH растворителя и ионо-генных групп в белке. К слабым взаимодействиям относят также ионные связи и ван-дер-ваальсовы взаимодействия. Кроме того, конформация белков поддерживается ковалентными связями 8—8, образующимися между двумя остатками цистеина. В результате гидрофобных и гидрофильных взаимодействий молекула белка спонтанно принимает одну или несколько наиболее термодинами-чесю выгодных конформаций, причем, если в результате каких-либо внешних воздействий нативная конформация нарушается, возможно полное или почти полное ее восстановление. Впервые это показал К. Анфинсен на примере каталитически активного белка рибонуклеазы. Оказалось, что при воздействии мочевиной или р-меркаптоэтанолом происходит изменение ее конформации и, как следствие, резкое снижение каталитической активности. Удаление мочевины приводит к переходу конформации белка в исходное состояние, и каталитическая активность восстанавливается. [c.35]

    Сульфгидрильная функциональная группа белков играет, как известно, важную роль в механизмах функционирования определенных ферментов. Поскольку большинство этих ферментов содержит несколько 5Н-групп, идентифицировать именно ту сульфгидрильную группу, которая непосредственно осуществляет каталитическую функцию, и определить ее место в аминокислотной цепи — довольно трудная задача. В некоторых благоприятных случаях каталитически активная 5Н-группа оказывается также наиболее химически активной, что может быть обусловлено ее незащищенным положением в третичной структуре фермента или ее окружением. Добавление одного эквивалента реагента на 5Н-группу, меченного радиоактивным изотопом, должно привести к тому, что помстится интересующая нас ЗН-группа. Однако 5Н-группа в активном центре может обладать такой же или меньшей реакционной способностью по сравнению с другими 5Н-групнами, и ее удается пометить лишь при помощи какого-нибудь остроумного метода. Если 5Н-груп-па, непосредственно участвующая в каталитическом акте, защищена субстратом от алкилирующих агентов, то после предварительного алкилирования всех остальных 5Н-групп в присутствии субстрата и последующего удаления избытка немеченого алкилирующего агента и субстрата ее можно пометить алкилирующим соединением, содержащим радиоактивную алки-лирующую группу. Этот прием используют только с нативным ферментом, поскольку добавление денатурирующего агента приводит к изменению укладки полипептидной цепи и нарушению специфической конформации активного центра, в результате чего субстрат не в состоянии защитить каталитически активную 5Н-группу, Алкилирующими агентами, удобными для проведения такого рода экспериментов, оказал ись С-иодацетамид и [c.479]


    Приступая к разделению белков, необходимо тщательно подобрать pH, ионную силу, температуру, электролит и носитель, поскольку от перечисленных условий зависят физико-химические и биологические свойства каждого отдельного белка. Формирование высших структур (т. е. вторичной, третачной и четвертичной), а также надмолекулярных агрегатов обусловлено ионными и гидрофобными взаимодействиями и образованием водородных связей. Эти же взаимодействия определяют и процесс разделения. Очевидно, условия хроматографии должны быть такими, чтобы выделенный продукт сохранил определенные представляющие интерес свойства, каковые, как правило, связаны ссохра-нением его нативного состояния и биологической активности. В то же время для определения физических свойств субъединиц белка часто его необходимо денатурировать и с этой целью подвергнуть жесткой обработке (например, мочевиной или гидрохлоридом гуанидина) с последующей химической модификацией (например, расщепить дисульфидные связи и блокировать сульф-гидрильные группы). Таким образом, конкретная задача определяет выбор метода разделения белков. Следует также отметить, что в процессе разделения нативных белков участвуют функциональные группы, расположенные на поверхности. Однако если белки полностью или частично денатурированы, появляются новые группы, ранее скрытые внутри макромолекулы, которые могут изменить не только силу, но и природу взаимодействия белка с сорбентом. В результате при хроматографиче- [c.104]

    По третьему способу, состоящему в химическом синтезе (см. гл. 23.6) аналогов, в особенности пептидных гормонов, также можно получить большую информацию относительно связи между структурой и биологической активностью. Гастрин — амид гептадекапептида из слизистой желудка — на С-конце имеет последовательность (21). После синтеза амида этого пептида было обнаружено, что он обладает полной активностью нативного гормона. Нет необходимости ограничивать синтез, исходя лишь из 20 аминокислот, встречающихся обычно в белках. Синтезирован активный фрагмент р-кортикотропина, у которого вместо Met" был остаток а-аминомасляной кислоты, однако окисление Met" до сульф-оксида в нативном гормоне приводит к потере активности. Можно предположить, что в данном случае -полярность боковой группы играет более важную роль, чем ее химическая структура. [c.283]

    Одной из широко распространенных химических постсинтетических модификаций является фосфорилирование остатков серина и треонина, например, в молекуле гистоновых и негистоновых белков, а также казеина молока. Фосфорилирование-дефосфорилирование ОН-группы серина абсолютно необходимо для множества ферментов, например для активности гликоген-фосфорилазы и гликоген-синтазы. Фосфорилирование некоторых остатков тирозина в молекуле белка в настоящее время рассматривается как один из возможных и специфических этапов формирования онкобелков при малигнизации нормальных клеток. Хорошо известны также реакции окисления двух остатков цистеина и образование внутри- и межцепочечных дисульфидных связей при формировании третичной структуры (фолдинг). Этим обеспечивается не только защита от внешних денатурирующих агентов, но и образование нативной конформации и проявление биологической активности. [c.533]

    Качественное изменение ситуации в изучении механизмов свертывания белковых цепей наметилось в самом конце 1980-х годов. Оно вызвано открытием нового класса белковых молекул, существование которых мало кто предполагал, во всяком случае, оно представлялось маловероятным. Их функции в жизнедеятельности клеток заключаются в содействии правильной невалентной сборки других белков, не становясь, однако, компонентами их окончательных физиологически активных структур. Белки этого класса получили название молекулярных шаперонов . Открытие шаперонов вместе с известными ранее, но необобщенными и не привлекшими к себе должного внимания данными поколебало, особенно на первых порах, общепринятую точку зрения на принципы структурной организации белковых молекул. Новые факты неизбежно вели к заключению, что существовавшее представление о свертывании полипептидной цепи in vivo как о самосборке белка, по меньшей мере не совсем точно отражает реальный процесс. Необходимость пересмотра устоявшегося мнения о взаимосвязи между химическим и пространственным строением белковых молекул диктовалась новыми экспериментальными данными, число которых начинает возрастать лавинообразно. Все они свидетельствовали об уменьшении выхода, замедлении скорости и даже полном прекращении сборки трехмерных структур одних белков по мере снижения вблизи рибосом концентрации других белков. Стали известны две группы молекулярных посредников, функции которых в клеточной сборке белковых цепей оказались значительными и разнообразными. Они влияют на скорость свертывания цепи, целенаправленно ускоряя или замедляя созревание нативной конформации, определяют порядок формообразования сложных комплексов, стимулируя реорганизацию белок-белковых взаимодействий в олигомерных структурах, облегчают деградацию неправильно свернутых цепей, стабилизируют, транспортируют и соединяют в соответствующих клеточных компартментах [c.412]

    Основные вопросы, связанные с иммобилизацией белков. При рассмотрении вопросов, связанных с иммобилизацией белков, в первую очередь необходимо отметить, что при иммобилизации белок частично денатурируется, то есть, по наиболее общему определению, изменяет в какой-то степени свои первоначальные (нативные) характеристики. Эти изменения происходят как под воздействием физико-химических условий синтеза (температура, состав и концентрация модифицирующего раствора), так и в результате ковалентной межмолекулярной сшивки. Поэтому условия синтеза гетероповерхностного сорбента, предназначенного для анализа биологических проб с прямым вводом, следует подбирать таким образом, чтобы, с одной стороны, не происходило значительных изменений нативной глобулярной структуры белка для создания максимально однородного внешнего покрытия частиц, а с другой — чтобы уже иммобилизованный белок был лишен детерминантных групп (активных центров) для устранения возможных биоспеци-фических взаимодействий с содержащимися в пробе белками. Хотя для иммобилизации используются преимущественно инертные белки (например, сывороточный альбумин), их инертность весьма относительна. Но, по крайней мере, такое допущение принимается по сравнению со специализированными белками. Примерно в половине работ, посвященных созданию селективных электродов и сорбентов при иммобилизации ферментов, последние иммобилизуются совместно с альбуминами или коллагеном, либо на их матрицы. [c.544]

    Вторичная и третичная структуры белка формируются самопроизвольно и определяются первичной структурой его полипептидной цепи. Параллельно синтезу цепи происходят ее локальное свертывание (образование вторичной структуры) и специфическая агрегация свернутых участков (формирование третичной структуры). Эти процессы детерминируются химическими группами, отходящими от атомов а-углерода соответствующих остатков. Например, обработка мономерного фермента рибонуклеазы мягким восстанавливающим агентом (Р-меркап-тоэтанолом) и денатурирующим агентом (мочевиной или гуанидином см. ниже) приводит к инактивации белка и переходу его в неупорядоченную конформацию. Если медленно удалять денатурирующий агент и осуществлять постепенное реокисление, то вновь образуются 8—8-связи и практически восстанавливается ферментативная активность. Нет никаких оснований думать, что существует независимый генетический контроль за формированием уровней структурной организации белка вьние первичного, поскольку первичная структура специфически определяет и вторичную, и третичную, и четвертичную структуру (если она имеется)—т.е. конформацию белка. Нативной конформацией белка, в частности рибонуклеазы, по-видимому, является термодинамически наиболее устойчивая структура в данных условиях, т.е. при данных гидрофильных и гидрофобных свойствах среды. [c.48]


Смотреть страницы где упоминается термин Химически активные группы в нативных белках: [c.35]    [c.136]    [c.424]    [c.272]   
Смотреть главы в:

Белки Том 1 -> Химически активные группы в нативных белках




ПОИСК





Смотрите так же термины и статьи:

Белки k-m-e-f-группы

Нативный белок



© 2025 chem21.info Реклама на сайте