Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Графит с щелочными металлами

    Изучены соединения внедрения в графит щелочных металлов, а также (путем замещения атомов металлов) аммиака, хлорида железа, хлорида алюминия и других молекул. [c.42]

    Физические свойства определяются видом щелочного металла. Электропроводность МСС выше, чем у применяемого для этого синтеза графита, по оси а в 10 раз, по оси с в 200 раз. Температурный коэффициент электросопротивления положительный, т. е. носит металлический характер. Аналогичные изменения наблюдаются у МСС щелочной металл (Аг)-графит. [c.273]


    Графит по сравнению с алмазом более химически активен он относительно легко окисляется и образует ряд своеобразных соединений. Атомы щелочных металлов, галогены, анионы серной кислоты и другие способны внедряться между плоскостями решетки Графита, давая ионные соединения неопределенного состава. Число электронов в зоне проводимости при этом может измениться некоторые вещества обогащают ее электронами и повышают проводимость (например, щелочные металлы) графита, другие, наоборот, снижают число электронов, и проводимость уменьшается. При образовании прочных ковалентных соединений между внедрившимися атомами и атомами углерода, лежащими в разных слоях, электрическая проводимость резко падает и параллельность слоев, по-видимому, нарушается. Такие соединения образует графит с кислородом (между слоями возникают мостики —С—О—С—) и фтором (вероятно, мостики имеют строение —С—Р—Р—С—). Нельзя не обратить внимание на сходство строения плоских систем атомов углерода в графите со строением бензола и углеводородов, содержащих конденсированные циклы. Огромный материал, накопленный в органической химии, свидетельствует об исключительной роли таких циклов в химии углерода и в биохимии. [c.163]

    Изучены соединения внедрения в графит щелочных металлов, [c.42]

    Периоды — это горизонтальные графы (полосы), включающие совокупность элементов, расположенных в порядке постепенного возрастания атомных масс, начинающиеся с типично металлического элемента (щелочного металла) через амфотерные и заканчивающиеся типично неметаллическим элементом (галогеном). Инертные газы, в то время еще неизвестные, в таблице отсутствуют. Таких периодов было намечено 7. [c.76]

    К реакциям, при которых кристаллическая структура графита полностью не разрушается, относится образование твердых растворов металлов в графите. Наиболее изучены растворы щелочных металлов (калия, цезия и рубидия). В этих растворах атомы металлов закономерно размещаются между атомными слоями решетки графита, при этом металлические свойства графита не исчезают. Известны также растворы в графите железа, галоидов и др. [c.42]

    Для полноты удаления примесей из лития методом вакуумной дистилляции при достигнутом в системе вакууме большое значение имеет правильный выбор степени нагрева камеры испарения 5 и конденсатора 7 [3, 54]. По данным Р. Роджера и Г. Вьена [14], дистилляция лития в присутствии аргона при 800° С в вакууме (менее 4-10 мм рт. ст.) приводит к получению металла с содержанием натрия 0,002 вес. % при температуре конденсатора 340—420° С <ачество очищенного щелочного металла в значительной сте пени определяется материалом, из которого сконструирована ва куумная дистилляционная установка. Графит, кварц и стекло раз личных марок обладают малой устойчивостью в расплавах ли тия, рубидия и цезия при температуре выше 200° С [8, 50, 54] [c.395]


    Соединения графита с и елочными металлами и бромом. При обработке расплавленными металлами или их парами графит образует со щелочными металлами следующие соединения С.А [6]  [c.21]

    Если потенциал металлического анода имеет более отрицательное значение, чем потенциал ионов ОН или других веществ, присутствующих в растворе, в газовой фазе около электрода или на электроде, то происходит растворение металла. При этом протекает электролиз с растворимым анодом. Если потенциал металлического анода близок к потенциалу других электродных процессов, то наряду с растворением металла на аноде протекают также другие процессы, например разряд ионов 0Н . В этом случае также говорят об электролизе с растворимым анодом, но учитывают и другие анодные процессы. Если потенциал металла или другого проводника первого рода, используемого в качестве анода, имеет более положительное значение, то протекает электролиз с нерастворимым анодом. В качестве нерастворимых анодов применяют золото и платиновые металлы, диоксид свинца, оксид рутения и другие вещества, имеющие положительные значения равновесных электродных потенциалов, а также графит. Некоторые металлы практически не растворяются из-за высокой анодной поляризации, например никель и железо в щелочном растворе, свинец в H2SO4, титан, тантал, нержавеющая сггль. Явление торможения анодного растворения металла из-за образования защитных слоев называется пассивностью металла. [c.210]

    Поликислоты обладают особыми свойствами, и их используют в качестве реагентов или среды для разнообразных реакций. Например, в расплаве пиросульфатов щелочных металлов (КгЗгО и других) оксиды металлов легко превращаются в сульфаты. Сильная фосфорная кислота (смесь конденсированных фосфорных кислот, образующаяся в процессе нагревания фосфорной кислоты в вакууме) в качестве среды для окислительно-восстановительных реакций обеспечивает протекание ряда специфических реакций хлорид олова (И) все соединения серы переводит в сероводород, а иодат калия количественно окисляет графит. Гетерополикислоты также имеют характерные особенности, одна из которых — способность сильно изменять окислительно-восстановительный потенциал. [c.167]

    Алмаз и графит сильно различаются по своему химическому поведению, причем это касается не только реакционной способности, что обычно для аллотропных видоизменений одного элемента. Графит не только более реакционноспособен, чем алмаз, но и, реагируя с некоторыми веществами, может образовывать такие продукты, каких не образует алмаз. Эти продукты представляют собой результат внедрения атомов и целых молекул между слоями углеродных атомов в решетке графита. Соединения графита , как их называют, имеют переменный состав и не соответствуют обычным представлениям о валентности элементов. Так, в решетку графита могут внедряться атомы фтора, кислорода, щелочных металлов, молекулы трихлорида железа, органические молекулы. [c.154]

    На рис. 1.50, б представлена диаграмма общей плотности состояний. Заштрихованная часть диаграммы отвечает полностью заполненным одноэлектронным уровням. Добавление в структуру графита дополнительных электронов будет приводить к заполнению верхней части зонной структуры, образованной за счет разрыхляющих я -взаимодействий. В этом случае следует ожидать значительного ослабления взаимодействия между находящимися в одной гексагональной плоскости атомами углерода. Экспериментально это подтвердилось при исследовании интеркалля-ционных соединений графита Мд.С (М = К, С5), в которых электроположительные атомы щелочных металлов, размещающиеся между гексагональными слоями, служат поставщиками электронов в разрыхляющие состояния зонной структуры графита. На рис. 1.51 представлена экспериментальная зависимость межатомного расстояния С—С ( /) от концентрации в графите щелочного металла. Из графика видно, что по мере увеличения содержания металла и, следовательно, концентрации введенных в графит электронов происходит монотонное увеличение межатомного расстояния. Это [c.71]

    Свободные или нанесенные на трегеры (графит, M.gO, А12О3, К2СО3) щелочные металлы (Ма, К, Ь1) [214, 215] или их производные (гидриды, алкиламиды) [216—218], с растворителями или без них, при 150— 200° С и 70—350 атм легко димеризуют пропен в смесь изомеров 2-.метилпентена, содержащих двойную связь, причем основным продуктом реакции является 4-мегилпентен-1, как и следовало ожидать ввиду присоединения аллильного карбаниона к двойной связи [c.106]

    Из всех осцилляционных эффектов наиболее известен и хорошо изучен эффект де Гааза—ван Альфена (1931 г.). Первые наблюдения эффекта выполнены на висмуте, затем на сурьме и мышьяке (валентность 5), графите и олове (валентность 4), алюминии и таллии (валентность 3), цинке и ртути (валентность 2) и лишь на много позднее были исследованы медь, серебро, золото и щелочные металлы. [c.341]


    Здесь можно сделать несколько замечаний. Много ли простых тел растворимы в органических (или любых иных) растворителях Разумеется, галогены (во многих растворителях), сера и фосфор (в сероуглероде), кислород в полифторированных простььх эфирах, щелочные металлы в жидком аммиаке, многие металлы в ртути и что еще ... Что до углерода, то графит и алмаз, до открьггия фуллеренов единственные (кроме сравнительно экзотического карбина) известные аллотропные формы этого элемента, полностью нерастворимы в любых органических или неорганических растворителях (не считая некоторой растворимости в расплавленном железе). Раньше нельзя бьшо всерьез рассматривать возможность проведения каких-либо экспериментов с растворами элементарного углерода. Однако и Сео, и С70 умеренно растворимы в обычных органических растворителях. Теперь можно манипулировать с растворами элементарного углерода в бензоле (или толуоле, дихлорбензоле или некоторых других растворителях). Это уникальное свойство [c.398]

    Атомы некоторых элементов, а также многоатомные соединения могут внедряться в графит и образовывать слоистые соединения. Наиболее изучены слоистые соединения щелочных металлов [84]. Как правило, они получаются нагревом графита и соответствующего щелочного металла до температуры, отвечающей определенному давлению паров металла. Считается, что могут образовываться слоистые соединения определенного состава. Такой вывод делается из рассмотрения кривых зависимости состава слоистого соединения от температуры его получения. Эти кривые имеют вид изотерм сорбции, причем каждой ступеньке соответствует слоистое соединение определенного состава (рис. 55). Соотношение между углеродом и металлом имеет дискретные значения, которые для щелочных металлов составляют С Мё, С Ме, СзвЛ е, С Ме, С,(,(,Ме, что отвечает расположению слоя атомов металла через один слой углерода, два и т.д. соответственно. Такие соотношения характерны при применении для синтеза слоистых соединений достаточно совершенных кристаллических форм углерода. Наличие дефектов структуры в реальных материалах может приводить к образованию соединений, отличающихся составом от приведенных. [c.137]

    Предполагается, что атомы щелочного металла находятся над центрами шестиугольников углеродных сеток. При этом углеродные сетки по обеим сторонам слоя атомов металла оказываются расположенными так, что атомы углерода находятся один над другим, т.е. при образовании соединений внедрения происходит сдвиг углеродных сеток. Внедрение щелочных металлов приводит к росту электропроводности, что объясняется переходом электронов в незаполненную зону. Одновременно исчезает диамагнетизм, характерный для углероднь Х материалов. Некоторые слоистые соединения графит а имеют удельное электросопротивление, близкое к электросопротивлению меди. [c.138]

    Обзор [6]. Эта реакция позволяет удлинить алкильную группу каталитическим путем при условии, что в арилалкане имеется хотя бы один бензильный водород. Наиболее часто в реакции применяется этилен, но можно использовать и другие олефины, например пропилен или стирол. Катализаторами обычно являются натрийорга-нические соединения [7], щелочные металлы [8], бензилнатрий [9] и калий на графите [10]. [c.41]

    К реакциям, в которых слоистый каркас графита сохраняет присущую ему структуру и гексагональный характер, относятся реакции образования кристаллических соединений графита со щелочными металлами (Ма, К, Rb, Сз). В результате действия на графит жидких или парообразных щелочных металлов образуются соединения постоянного состава СаМе, С1вМе и др. Наиболее изучены соединения СвК и СиК. Атомы калия, внедряясь между базисными плоскостями, увеличивают расстояние между ними соответственно до 5,65 и 5,95 А. Внедрение атомов щелочных металлов в кристаллическую решетку графита вызывкет разрыхление материала. Наиболее сильное разрыхление наблюдается у нефтяного и пекового коксов, в меньшей степени — у графита. Таким образом, интенсивность разрушения возрастает с уменьщением степени трехмерной упорядоченности структуры углеродистого материала при перехфде от графита к коксам. [c.42]

    Равновесный потенциал разряда на аноде молекул воды с выделением газообразного кислорода ниже равновесного потенциала выделения хлора, поэтому получение нрактически чистого хлора нри электролизе водных растворов хлоридов щелочных металлов становится возможным из-за большего (но сравнению с хлором) перенапряжения выделения кислорода на применяемых в практике анодных материалах графите, платине, окислах рутения или магнетите. [c.85]

    Кроме щелочных металлов, графит образует слоистые соединения с галогенами и некоторыми хлоридами (А1С1з, РеС1з). Образование слоистых соединений графита сопровождается уменьшением свободной энергии, однако в том случае, когда это уменьшение невелико, для проведения реакции необходимо присутствие катализаторов. .,  [c.42]

    Получение. Г. с. образуются, как правило, при нагревании графита с внедряющимися в-вами, напр, с хлоридами металлов-при 230-280 С, с щелочными металлами - при 300 °С и выше. С бромом графит реагирует при комнатной т-ре. В нек-рых случаях требуется катализатор (напр., lj), роль к-рого сводится к обмену электронами с реагентами в случае отсутствия такой способности (по отношению к графиту) у внедряющегося в-ва. Катализаторы входят в состав Г. с. Так, при образовании соед. с AI I3 один атом С приходится на три молекулы хлорида, в случае In lj или Gd lj-Ha шесть молекул хлорида. [c.609]

    При обычных т-рах У. химически инертен, при достаточно высоких соединяется со мн. элементами, проявляет сильные восстановит, св-ва. Хим. активность разных форм У. убывает в ряду аморфный У., фафит, алмаз, на воздухе они воспламеняются при т-рах соотв. выше 300-500 °С, 600-700 °С и 850-1000 °С. Продукты горения - углерода оксид СО и диок-свд СО2. Известны также неустойчивый оксвд С3О2 (т. пл. -111 °С, т. кип. 7 °С) и нек-рые др. оксвды. Графит и аморфный У. начинают реагировать с Н2 при 1200 С, с Р2 - соотв. выше 900 °С и при комнатной т-ре. Графит с галогенами, щелочными металлами и др. в-вами образует соединения включения (см. Графита соединения). При пропускании электрич. разряда между угольными электродами в среде N2 образуется циан, при высоких т-рах взаимодействием У. со смесью Н2 и N2 получают синильную кислоту. С серой У. дает сероуглерод С5р известны также С8 и С большинством металлов, В и 81 У. образует карбиды. Важна в пром-сти р-ция [c.26]

    Желтый, мягкий, жирный на ощупь как графит ( сусальное золото ). Устойчив на воздухе, при нагревании темнеет и разлагается. Не растворяется в воде. Образует коричневый кристаллогидрат SnS 2HjO. Не реагирует с разбавленными кислотами, щелочами, гидратом аммиака. Разлагается в концентрированной хлороводородной кислоте. Переводится в раствор концентрированными щелочами, сульфидами щелочных металлов, гидросульфидом аммония. Получение см. 246 , 25б . [c.128]

    Слабое дисперсионное взаимодействие между слоями графита (I — 2 ккал) облегчает внедрение щелочных металлов в пространство между слоями. Было замечено, что в жидких щелочных металлах графит набухает. Это дает основание предполагать наличие в соединениях графита с щелочными металлами отрицательно заряженных гигантов-анионов (Сзт ) и (С24п)" . [c.112]

    Равновесный нотеициал разряда па графитовом аноде молекул воды с выделением газообразного кислорода нии е равновесного потенциала выделения хлора, и получение практически чистого хлора при электролизе водных растворов хлоридов щелочных металлов становится возможным вследствие большей, по сравнению с хлором, величины перенапряжения кислорода на графите. То же самое происходит и на других применяемых анодных материалах — платине, окислах рутения или магнетите. [c.84]

    Высокая химическая активность лития, рубидия и цезия требует особых условий хранения, упаковки и обращения с этими металлами. Особенно опасны в пожарном отношении плавка, разлив и переплавка щелочных металлов. Загоревшийся металл рекомендуется [65] засыпать специально приготовленной смесью, состоящей на 80—98 /о из инертного материала (графит, хлорид натрия), органических веществ (твердая смолз, смешанная с полиэтиленом) и небольших (2—10 /о) добавок стеаратов и талька. Тушение пламени может быть также произведено сухим хлоридом натрия или содой (но не NaH Os ). Небольшие количества горящего металла (от граммов до нескольких килограммов) заливают четырехкратным по объему избытком минерального масла Поэтому при работе с литием и особенно с рубидием и цезием вблизи всегда должны быть наготове большие открытые контейнеры с минеральным маслом [50]. [c.396]

    Анализ. Трубочки с полученным препаратом после взвешивания вскрывают (отрезают кончик) и содержимое вытряхивают в предварительно нагретую колбу Эрленмейера ( gM и С24М в колбе воспламеняются или начинают тлеть). По охлаждении графит обрабатывают кипящей водой, отфильтровывают и промывают. В фильтрате методом титрования определяют содержание щелочи. Высушенный графит, который содержит еще некоторый процент щелочи, несколько раз обрабатывают конц. H2SO4 с последующим выпариванием до появления дыма, а затем прокаливают. Взвешивают образовавшийся сульфат щелочного металла и вводят поправку на содержание зольных компонентов в исходном графите. [c.674]

    При высоких температурах (670—870 К) в присутствии сильных окислителей графит претерпевает окислительные превращения, которые в конечном счете приводят к образованию газообразных продуктов. При более низких температурах (570—670 К) могут образовываться слоистые соединения графита, в которых еще сохраняется слоистый каркас углеродных сеток. Среди слоистых соединений графита большую группу составляют продукты, содержащие калий и другие щелочные металлы. Так, расплавленный металлический калий поглощается графитом с образованием при 670 К продуктов приблизительного состава СаК, С1бК, С24К, СзбК. Атомы калия, внедряясь между базисными плоскостями графита, увеличивают расстояние между ними до (5,40—5,65) X X м [31]. Внедрение атомов щелочных металлов в кристаллическую решетку графита вызывает разрыхление материала. В ряде случаев графит выступает донором электронов в так называемых графитовых солях. Известны синие соли графита, и среди них особой стабильностью обладают нитрат графита 24 NOз-, который характеризуется расстоянием между слоями углеродных атомов 8-10 м [31]. Существует мнение, что нитрат графита можно рассматривать в качестве некоторого промежуточного продукта, возникающего при одновременном действии температуры и окислителя с образованием предельно окисленного продукта. [c.473]

    При использовании в качестве катода ртути или амальгамы Щелочных металлов вероятны кратковременные контакты анода со ртутью или амальгамой и короткие замыкания анодов с ртутным катодом. Материал анода должен быть устойчив в этих условиях. Хотя в условиях длительного контакта с ртутью и амальгамой из известных анодных материалов достаточно стоек только графит, предложен ряд приемов, повышающих стойкость окиснорутевиевых Или платиновых анодов при кратковременном контакте с амальгамой Или ртутью. Этот вопрос будет более подробно рассмотрен в VI гл. [c.15]

    Метод дуги постоянного тока использован для определения галлия в различных породах и минералах [81, 87, 174, 429, 666, 823, 873, 883, 974, 977, 1113, 1114, 1151, 1183, 1192, 1319, 1418], глинах [907, 1183], в почвах [1013], в бокситах [989, 1183], в рудах и продуктах их обогащения [56, 429, 1113, 1114, 1151, 1418], в отходах цветной металлургии [56], в ZnS [885], в золах и сланцах [1184], в огнеупорах [1183], в водах i[1325], в органичесиих соединениях [400], в HF, HNO3 и НС1 [105], в цинк-селенидных электролюминофорах [515], в сплаве In—Ga [1147], в боре (борный ангидрид, борная кислота) [75], графите [850, 929], кремнии [106, 107, 427, 1134] и его соединениях [106, 107, 397, 1134], в германии (108, 336, 336а] и его соединениях [108], в индии [88, 381], цинке [555], олове [557, 559, 560], сурьме [466], бериллии и его окиси [242], селене [506], щелочных металлах [542] и уране [730]. [c.158]

    Тушение лнтия Серьезную опасность представляет загоревшийся металлический литий Использование обычных средств пожаротушения (вода, пена, диоксид углерода, галогенпроизводные углеводородов) либо усиливает горение, либо ведет к взрыву При темпера туре выше 250 °С литий быстро разрушает стекло, кварц, бетон, огнеупоры, реагирует с песком Литий продолжает гореть в атмосфере азота и диоксида углерода Непригодны для тушения хлорид и карбонат натрия, поскольку при контакте с этими солями горящий литий вытесняет натрий Нельзя применять также порошковые огнетушители снабженные составами ПС-1 н ПС 2, хотя во многих инструкциях их ошибочно рекомендуют для тушения всех щелочных металлов Для тушения горящего лития разр-аботаны специальные порошковые составы ПС-И, ПС 12 и ПС-13 на основе различных флюсов и графита с гидрофобизирующими добавками (см разд 3.1) Ою-дует испоои вать также порошкообразный графит, хлор нд лития, хлорид калия При работе с литием помимо обычных средств пожаро тушения необходимо иметь наготове достаточное коли чество одного из перечисленных порошков [c.250]


Смотреть страницы где упоминается термин Графит с щелочными металлами: [c.223]    [c.48]    [c.263]    [c.33]    [c.479]    [c.204]    [c.77]    [c.278]    [c.88]    [c.88]    [c.499]    [c.674]    [c.161]    [c.126]   
Руководство по неорганическому синтезу Т 1,2,3,4,5,6 (1985) -- [ c.673 ]

Нестехиометрические соединения (1971) -- [ c.327 ]




ПОИСК





Смотрите так же термины и статьи:

Графит

Графит графита

Графит металлов

Графой

Графы

Соединения, получающиеся при внедрении в графит кислорода, щелочных металлов, аммиака и анионов кислот



© 2025 chem21.info Реклама на сайте