Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Переработка газов низкотемпературной конденсацией

    Переработка газов низкотемпературной конденсацией [c.153]

    Выбор различных вариантов очистки определяется также и требованиями к сырью последующих стадий переработки. Так, если газ в дальнейшем предполагается направлять на низкотемпературную переработку (низкотемпературную конденсацию, абсорбцию или ректификацию), то нельзя производить очистку газа от Н25 и СО2 с использованием третичных аминов, которые селективно извлекают НгЗ в присутствии СО2, так как высокое содержание СО2 в очищенном газе может вы- [c.177]


    Оросительные конденсаторы и холодильники применяют при дефиците воды или высокой ее стоимости, а также при охлаждении илн конденсации низкотемпературных потоков (на установках но переработке газов). [c.541]

    К 1965 г. в эксплуатации находились 12 крупных газобензиновых заводов, работающих по схеме масляной абсорбции (50%), низкотемпературной конденсации (30%) и угольной адсорбции (20%>). Объем переработки нефтяных газов возрос до 6,1 млрд. м в год (в том числе 1,7 млрд. м природного газа), что обеспечило получение свыше 1,1 млн. т сжиженных газов. [c.43]

    Низкотемпературная конденсация. Она широко распространена в схемах переработки нефтяных газов на НПЗ, попутных и природных газов, как правило, в тех случаях, когда масштабы переработки газа достаточно велики, либо когда требуется выделить значительные количества этана или получить из природного газа гелий. [c.89]

    В США на долю НТА и НТК приходится около 65% всех мощностей по переработке газа, т. е. процессы низкотемпературной абсорбции и низкотемпературной конденсации стали основными технологическими процессами. Однако число установок, работающих по схеме НТА, постоянно уменьшается, а число установок НТК с турбодетандерными расширительными машинами возрастает (за 1978 г. число их увеличилось с 96 до 150) [19]. Использование прогрессивных технологических процессов позволило стабилизировать производство сжиженных газов в стране, несмотря на ухудшение качества сырья и снижение объема пере-)аботки газа с 581 млрд. м в 1970 г. до 463 млрд. м в 1979 г. 1ри этом объем переработки нефтяного газа, имеющего в основном высокое содержание пропана и более тяжелых углеводородов, уменьшился соответственно со 174 до 102 млрд. м . За истекшие 10 лет объем переработки нефтяного и природного газа находился на уровне 80—85% от товарной его добычи (на ГПЗ перерабатывают 92% добываемого нефтяного газа) [19]. [c.14]

    ТЕХНОЛОГИЧЕСКИЕ СХЕМЫ ПЕРЕРАБОТКИ ГАЗА МЕТОДОМ НИЗКОТЕМПЕРАТУРНОЙ КОНДЕНСАЦИИ [c.167]

    Несмотря на все многообразие технологического оформления процесса переработки нефтяных и природных газов методом низкотемпературной конденсации, все эти процессы состоят практически из одних и тех же основных узлов. Общими, обязательными для любой схемы НТК являются узлы сепарации газа на входе в технологическую схему от капельной жидкости и механических частиц компримирование газа осушка газа каскад регенеративных теплообменников для использования в схеме холода и тепла технологических потоков холодильный цикл сепаратор-разделитель узел деметанизации и этановой колонны (для схем, в которых товарным продуктом является этан и высшие) или узел деэтанизации конденсата (для схем, в которых товарным продуктом является пропан и высшие). [c.194]


    В США и Канаде на установках НТА извлечение этана из нефтяных и природных газов достигает 40—50% (температура сырьевых потоков, поступаюш,их в абсорбер, —40—45 °С, давление 6—7 МПа). При наиболее распространенных на отечественных ГПЗ параметрах (давление 3,4—3,9 МПа, изотерма —30 н—38 °С) из нефтяных газов (содержание Сз+высшие = 300—600 г/м ) извлекается около 40—50% этана и 90—95% пропана и более тяжелых углеводородов. При этом на стадии низкотемпературной конденсации извлечение пропана и более тяжелых углеводородов составляет соответственно 60—80%. При переработке газа с более низким содержанием углеводородов Сз+высшие нагрузка на абсорбер увеличивается. Однако на установках НТА обш,ее извлечение целевых углеводородов мало зависит от перераспределения нагрузок и изменения состава сырья. [c.206]

    В разделе III были рассмотрены все основные способы и процессы переработки газа, различные варианты технологического оформления этих способов (т. е. различные технологические схемы). Однако, несмотря на их различие, большинство узлов и простых процессов являются общими для всех схем и способов переработки газа. Так, общими являются процессы очистки от механических примесей и капельной жидкости очистки от СО2 и HjS (если они присутствуют в сыром газе) осушки от влаги компримирования нагнетания жидкости теплообмена холодильные, циклы низкотемпературная конденсация и сепарация двухфазных потоков смешение и разделение потоков. Дополнительными узлами в схемах НТК являются деэтанизация ШФУ, деметанизация и в самых современных схемах дросселирование жидких потоков и детандирование. Для схем НТА такими дополнительными узлами являются абсорбция, АОК и десорбция, а для схем НТР — ректификация. Поэтому чтобы рассчитать любую современную схему переработки газа, необходимо уметь рассчитывать следующие процессы  [c.268]

    Эффективность использования углеводородных газов в том или ином направлении значительно повысится, если эти газы предварительно очистить от механических твердых и жидких примесей и нежелательных газообразных компонентов (сероводород, углекислота), а углеводородную часть в случае необходимости разделить на индивидуальные компоненты или группы, близкие по своим свойствам, компонентов. В связи с этим в книге рассмотрены процессы очистки газа, а также процессы первичной переработки газа, такие, как компрессия, абсорбция, адсорбция, низкотемпературная конденсация и ректификация углеводородных газов. Обычно все эти [c.7]

    В газовой промышленности наибольшее распространение получили сорбционные процессы и низкотемпературная конденсация для извлечения тяжелых углеводородов из газа. Компрессия применяется в основном как первый этап переработки газа и для транспортировки его по трубопроводам. [c.8]

    На Белозерном ГПЗ переработка газа предусмотрена по схеме низкотемпературной конденсации с турбодетандером двумя технологическими линиями (каждая производительностью по 2000 млн сырого газа в год) на комплектном импортном оборудовании. [c.61]

    Губкинский ГПЗ. Первая технологическая линия введена в эксплуатацию в 1989 г. Переработка газа предусмотрена по схеме низкотемпературной конденсации с турбодетандером четырьмя технологическими линиями (каждая производительностью по 1,0 млрд м сырого газа в год). [c.61]

    Г. к. выделяют из газов методом низкотемпературной конденсации (сепарации) с применением холода, получаемого при дросселировании или детандировании либо на спец. холодильных установках (см. Холодильные процессы). Для более глубокого извлечения Г. к. используют те же методы (низкотемпературные конденсацию, абсорбцию и ректификацию), что и для переработки нефтяных и прир. газов (см. Газы природные горючие). [c.469]

    Состоит из четырёх заводов, размещённых на одной площадке. Переработка газа на ГПЗ №1, 2, 3 предусмотрена по схеме низкотемпературной абсорбции на отечественном оборудовании. Переработка газа на ГПЗ № 4 предусмотрена по схеме низкотемпературной конденсации с турбодетандером на комплектном импортном оборудовании (рис.1). [c.10]

    Принципиальная схема переработки газа способом низкотемпературной конденсации (НТК) должна включать в себя следующие узлы компримирование газа до требуемого давления осушку охлаждение газа до заданной температуры для образования двухфазной смеси сепарацию (разделение) двухфазной смеси сухой газ направляют потребителю, жидкую фазу (широкую фракцию углеводородов — ШФУ) — на деэтанизацию (деметанизацию) образовавшейся жидкой фазы для получения товарной продукции, так как в зависимости от получаемых целевых продуктов — этана + высшие или пропана + высшие — предельно допустимое содержание этана или метана в товарной продукции ограничивается. [c.24]

    В нефтяной и газовой промышленности широкое распространение при обработке приводных и попутных газов получили процессы осушки и очистки газа, процессы газоразделения методами низкотемпературной абсорбции, низкотемпературной конденсации и ректификации, а также стабилизации конденсата. При этом, если в недалеком прошлом подготовка газа на промыслах ограничивалась осушкой и выделением конденсата, то в последние годы в связи с открытием и вводом в эксплуатацию крупных месторождений газа, в составе которого наряду с легкими углеводородами могут содержаться в большом количестве тяжелые углеводороды, сероводород, диокись углерода, меркаптаны и тяжелые парафиновые углеводороды, промысловая подготовка газа по своим функциям и процессам стала приближаться к технологии, на которой базируются очистка и переработка газов на газо- и нефтеперерабатывающих заводах [10]. [c.31]


    В практике переработки попутных газов применяют следующие основные способы отбензинивания (выделение углеводородов от Сз и выше) компрессионный, абсорбционный, адсорбционный, низкотемпературной конденсации. [c.676]

    Переработка нефтяных газов с целью извлечения из них тяжелых углеводородов осуществляется абсорбцией (поглощением), адсорбцией, а также методом низкотемпературной конденсации. [c.122]

    Переработка коксового газа ведется по схеме, приведенной на рис. 35. Коксовый газ разделяется на фракции путем низкотемпературной конденсации. В результате разделения получаются  [c.176]

    Особенность оросительных конденсаторов — наличие змеевика (чаще всего коллекторного), орошаемого водой из распределительного устройства. Благодаря значительной скрытой теплоте испарения воды, часть тепла (около 50 %) в этих аппаратах отводится испаряющейся водой. Поэтому расход воды в оросительных конденсаторах примерно вдвое меньше, чем в погружных. Оросительные конденсаторы используют при нехватке и высокой стоимости воды, а также для конденсации и охлаждения низкотемпературных потоков (на установках по переработке газа). Недостатки конденсаторов этого типа в основном те же, что и погружных аппаратов. [c.114]

    Рост потребностей в моторных и жидких топливс1Х вызвал тенденцию углубления извлечения газового бензина, пропана и бутанов и все большее вовлечение в переработку сравнительно тощих газов газовых и газоконденсатных месторождений. Началось совершенствование технологий переработки газа. Масляная абсорбция превратилась в низкотемпературную абсорбцию (Габс = —30- —50 °С) и в абсорбцию под высоким давлением (Равс = 14—16 МПа), адсорбция — в короткоцикловую адсорбцию. Началось освоение нового процесса — низкотемпературной конденсации. Извлечение пропана и бутанов [c.5]

    В целом каждая очередь завода представляет собой завершенный технологический цикл, внутри которого осуществляется переработка газа от исходного сырья, поступающего с промыслов, до товарных продуктов, направляемых потребителю. В качестве товарных могут получать продукты, которые направляются на другой завод для углубленной их переработки. На приведенной поточной схеме такими продуктами являются очищенный природный газ, часть которого направляют потребителю как товарный газ, а часть потока - на гелиевый завод с целью извлечения из него методами низкотемпературных конденсации и ректификации гелия, метановой и этановой фракций и ШФЛУ. Другой поток - стабильный конденсат -тоже реализуемый ОГПЗ как товарный продукт, направляется на Салаватнефтеоргсинтез для получения из него компонентов товарных моторных топлив. [c.178]

    По виду выпускаемого целевого продукта схемы НТК делятся на схемы для получения Са+высшие СХСМЫ ДЛЯ ПОЛучеНИЯ Сз+высшие-Рассмотрим наиболее типичные технологические схемы переработки газа по способу низкотемпературной конденсации. [c.168]

    С низа сепаратора 7 выводится выпавший конденсат и после регенерации его холода в теплообменнике 5, где он нагревается до 20—30 °С, подается в середину деэтанизатора 8. Верхний продукт деэтанизатора — смесь метана (20—70% об.), этана (30—75% об.) и пропана (не более 5% об.) смешивают с сухим газом сепаратора 7 и подают в магистральный газопровод. Нижний продукт деэтанизатора — широкая фракция углеводородов (ШФУ), представляющая собой смесь пропана и более тяжелых углеводородов (Сз .вь,сшие). используют для производства пропана, бутанов, пентанов и газового бензина или бытового газа и газового бензина (Сд+высшие)-Разделение ШФУ проводится на специальных газофракционирующих установках, которые могут быть в составе газоперерабатывающих, нефтеперерабатывающих или нефтехимических предприятий. Балансовая схема переработки газа описанным способом представлена на рис. П1.30. Блок деэтанизации является одним из основных агрегатов установки низкотемпературной конденсации, от эффективной его работы зависит качество продукции и в значительной степени экономика процесса. Повышенное содержание пропана в газе деэтанизатора приводит к потере товарной продукции, содержание этана в нижнем продукте деэтанизатора более 2—3% масс, приводит к производству некондиционного пропана или пропан-бутановой фракции на газофракционирующих установках (ГФУ), [c.169]

    I Атйерйкатгсгкаи фирма лЮор, занимающаяся болёё 30 лет исследованиями и проектированием газоперерабатывающих уста- i новок, считает, что поскольку за последние 5 лет резко повысился спрос на этан, следует ориентироваться на переработку газа способом низкотемпературной конденсации. При этом для сухих природных газов рекомендуются схемы НТК с детандером, которые позволяют извлекать до 40—60% этана (от потенциала), до 90% пропана и порядка 98% бутанов и высших. [c.257]

    Из изложенного следует, что существующее в отечественной практике некоторое деление между технологией переработки нефтяного газа и конденсатсодержащего газа в значительной мере условно. И для переработки нефтяного, и для переработки природного газа следует применять рассмотренные выше процессы низкотемпературной конденсации и абсорбции. Вследствие сравнительной бедности природных газов низкотемпературную ректификацию для их переработки применять не рекомендуется. И для нефтяных, и для природных газов, с точки зрения термодинамической и экономической целесообразности наиболее выгодна переработка по полной схеме, т. е. с получением индивидуальных углеводородов и стабильного бензина (а в случае конденсатсодержащего газа иногда и более тяжелых фракций). При этом обязательными для технологической схемы ГПЗ будут следующие узлы  [c.262]

    Используя опыт отечественного и зарубежного обустройства газоконденсатных месторождений, ВНИИгаз совместно с ЦКБН и проектными институтами разработал типовые схемы переработки конденсатсодержащего газа на промыслах по низкотемпературной конденсации и низкотемпературной абсорбции [116]. [c.263]

    Для извлечения пз газа бензиновых углеводородов в случае значительного содержания их (выше 150 г нм ) иногда ограничиваются одним комирессионпым способом, сжимая газ до давления 10— 40 кГ/см с последующим охлаждением до 20—30° С. При этом часть бензиновых компонентов остается в газовой фазе. Поэтому обычно процесс компрессии применяется в качестве первого этапа обработки газа для создания давления, требуемого для транспорта и переработки его. С целью более полного извлечения бутанов и пропана после сжатия газ дополнительно подвергается абсорбции или адсорбции либо низкотемпературной конденсации пли ректификации. [c.122]

    Конденсация из нефтяного газа углеводородов пропан-бутано-вой фракции при транспорте приводит к изменению состава газа, поступающего на газоперерабатывающий завод, и вызывает отклонения от принятой на заводе технологии переработки газового сырья. Последнее, в ко11ечном счете, приводит к снижению экономических показателей работы всего завода. Это можно проследить на примере Нижневартовского газоперерабатывающего зарода. Завод предназначен для получения широкой фракции легких углеводородов (ШФЛУ) и нестабильного бензина, а также для подготовки нефтяного газа Самотлорского, Мегиоиского и других нефтяных месторождений Западной Сибири к транспорту по магистральному газопроводу на Сургутскую ГРЭС, где газ используется в качестве топлива. Выбор схемы переработки газа диктовался необходимостью максимального сокращения сроков и стоимости строительства завода с учетом суровых климатических условий района, трудностей в транспорте жидких продуктов переработки газа. Первая и вторая очереди завода производительностью каждая по 2 млрд. м газа в год, спроектированы и построены по схеме низкотемпературной абсорбции (НТА), третья очередь (с такой же производительностью) — по схеме низкотемпературной конденсации (НТК). [c.28]

    С точки зрения комплексного подхода к системе сбора, подготовки нефти и переработки газа представляет интерес опыт эксплуатации нефтяного месторождения Рейнбоу-Лейк [41], расположенного на себеро-западе Канады в провинции Альберта. По климатическим условиям этот район Канады очень близок к условиям Западной Сибири. Месторождение расположено в труднодоступном таежном заболоченном месте, на территории которого построен газоперерабатывающий завод. Основное назначение завода — подготовка нефти и переработка нефтяного газа с целью получения обессоленной и обезвоженной стабильной нефти, сухого газа, широкой фракции легких углеводородов и элементарной серы. Связь с заводом осуществляется в основном с помощью авиации. Сбор нефти и газа на месторождении Рейнбоу-Лейк имеет много общего с лучевой системой сбора, описанной выше. Газонефтяная смесь прямо от скважины через замерные установки поступает на завод, где все потоки объединяются в одном коллекторе. Непосредственно на территории завода осуществляют сепарацию нефти в три ступени. Отделение газа в сепараторе первой ступени происходит при давлении 0,75 МПа и температуре 25°С. Нефть после сепаратора подогревают паром в теплообменнике до температуры 75—80°С и направляют сначала в сепаратор второй ступени с давлением 0,25 МПа, а затем в сепаратор третьей ступени с давлением 0,1 МПа. Далее нефть идет иа установку по обезвоживанию и обессоливанию. Доведенную до кондиции нефть перекачивают по нефтепроводу на НПЗ. Нефтяной газ, отделившийся на третьей и второй ступенях сепарации, самостоятельными потоками поступает на разные цилиндры компрессора, дожимается до давления 0,75 МПа и подается на смешение с газом первой ступени. Нефтяной газ месторождения Рейнбоу-Лейк содержит около 5% сероводорода. Поэтому, прежде чем поступать на блок переработки, этот газ подвергается очистке от НгЗ по абсорбционной схеме. Переработку газа осуществляют по схеме низкотемпературной конденсации при давлении 2,7 МПа и температуре — 18°С. Для осушки газа применяют 80%-ный раствор триэтиленгликоля (ТЭГ), который инжектируется в сырьевые теплообменники и в распределительную камеру пропанового холодильника. Точка росы осушенного газа достигает —34°С. Основную часть перерабо- [c.39]

    Общие вопросы низкотемпературной переработки газа 153 Подготовка газа к низкотемпературной переработке 156 Установки низкотемпературной сепарацЕИ, работающие за счет изоэн-тальпийного расширения газа 158 Технологические схемы установок низкотемпературной конденсации с искусственным холодом 167 Установки, низкотемпературной конденсации с изоэнтропяйным холодильным циклом 177 Сжатие газов низкого давления 185 Структура энергетических затрат ГПЗ 189 [c.4]

    Рассмотрим это на примере Оренбургского ГПЗ. Газ после очистки водным раствором ДЭА для извлечения из него тяжелых углеводородов и воды подвергается дополнительной переработке с Применением процесса низкотемпературной конденсации (НТК). При этом для борьбы с гидратообразованием на заврде используется водный раствор этилеигликоля. [c.123]

    В соответствии с данными табл. 6.1, для достижения степени извлечения этана 60% и выше необходимо снизить температуру процессов переработки газа до минус 80 С и ниже> Для этой цели чаще всего применяют криогенные процессы с каскадным холодильным циклом и установки с турбодетан-дерными агрегатами. Число установок низкотемпературной конденсации с турбодетандерным агрегатом среди вновь проектируемых заводов преобладает над другими типами установок. [c.154]

    Выбор способа осушки газа зависит от состава сырья. Для осушки тощих газов применяются абсорбционные и адсорбционные процессы. При наличии в газе конденсата переработка газа осуществляется с иримеиеипем низкотемпературных процессов. При этом на стадии охлаждения газа происходит конденсация водяных паров за счет снижения равновесной влаго-емкости газа. [c.9]

    Углеводородные газы, как видно из табл. 22 и 23, предстад -ляют собою весьма сложные смеси. Для производства химических продуктов в большинстве случаев требуется сырье, включающее узкие фракции или индивидуальные углеводороды. В связи с этим, химической переработке предшествует подготовка сырья, важнейшим процессом которой является разделение газов с получением фракций или индивидуальных углеводородов. В промышленности используются следующие методы разделения газовых смесей 1) компрессионный, 2) абсорбционно-десорбционный, 3) абсорбция при низких температурах, 4) адсорбционно-десорбционный, 5) низкотемпературная конденсация и ректификация. Сущность этих методов подробно излагается в курсе Процессы и аппараты химической промышленности . [c.479]

    Усовершенствование техники, применяемой при первичной переработке попутного газа, и технологического процесса с целью увеличения степени извлечения из него ценных углеводородов, необходимых для нефтехимической промышленности, В связи с этим при переработке газа необходимо внедрять получившие распространение прогрессивные методы низкотемпературной ректификации и конденсации. Рекомендуется также применять холод при работе заводов по маслоабсорб-ционной схеме. Применение холода на маслоабсорбционных газобензиновых заводах даст возможность повысить глубину извлечения пропана примерно до 90% от его потенциального содержания в газе. [c.137]

    Астраханском и Западносибирском газохимических комплексах (ГХК) и Сосногорском газоперераба-тьшающем заводе, на которые поступает сложный по составу газ ряда крупных газоконденсатных месторождений. На рис. 2.45 приведена блок-схема Оренбургского ГХК, перерабатьшающего газ Оренбургского месторождения. Товарной продукцией этого комплекса являются сухой и сжиженный газ, этан, конденсат, сера и i елий. В основе процесса переработки газа лежат физические методы низкотемпературной сепарации (конденсация паров вещества с понижением их температуры), абсорбции (избирательное поглощение газов или паров жидкими поглотителями-абсорбентами), адсорбции (поглощение вещества поверхностью твердого поглотителя-адсорбента) и др. Эти методы используются обычно в совмещенном технологическом режиме, определяя конструктивные особенности используемьк установок. [c.120]

    В настоящее время весьма актуальной проблемой химической переработки газа является повышение эффективности работы установок переработки нефтяного газа по схеме низкотемпературной конденсации в летнем и зимнем режимах с использованием многокомпонентных углеводородных хла-доагентов. Важность проблемы заключается в том, что повышение извлечения целевых компонентов С3 выше даже на 1 % позволяет дополнительно получить с учетом существующих мощностей только в Западной Сибири 30 тыс. т широкой фракции легких углеводородов. [c.261]

    Способы переработки углеводородных газов. Углеводородные газы (см, табл. 12 и 13) представляют собой сложные смеси. Для производства химических продуктов в большинстве случаев требуется сырье, включающее узкие фракции или якдивидуальные углеводороды. В связи с этим химической переработке предшествует подготовка сырья, важнейшим процессом которой является разделение газов с получением фракций или индивидуальных углеводородов. В промышленности используют следующие методы разделения газовых смесей компрессионный (конденсационный), абсорб-ционно-десорбционный, адсорбционно-десорбционный, низкотемпературную конденсацию и ректификацию. Направления химической переработки углеводородов зависят от их свойств. Основные пути переработки пиролиз, каталитическое дегидрирование, окисление, гидрирование, гидратация, конверсия, галоидирование, нитрование, алкилирование, изомеризация, полимеризация, используемые для получения этилена, пропилена, бутана, ацетилена, альдегидов, спиртов, кислот, кетонов, галоидо- и нитропроизводных, полимерных материалов и т. п. Помимо этого, алкилирование, изомеризация и полимеризация углеводородов применяются для получения высокооктановых компонентов топлив. [c.180]

    При химической переработке газы предварительно )азделяют на составные компоненты, или узкие фракции. Наибольшее распространение в промышленности находят следующие методы разделения газовых смесей абсорбционные и адсорбционные в сочетании с десорбцией, низкотемпературная конденсация и ректификация. [c.251]


Смотреть страницы где упоминается термин Переработка газов низкотемпературной конденсацией: [c.78]    [c.14]   
Смотреть главы в:

Графические модели процессов переработки природного газа Оренбургского гелиевого и газоперерабатывающего заводов -> Переработка газов низкотемпературной конденсацией




ПОИСК





Смотрите так же термины и статьи:

Конденсация газов

Конденсация низкотемпературная



© 2025 chem21.info Реклама на сайте