Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скелетная изомеризация

    Изомеризация карбениевых ионов может происходить либо п тем передачи протона (гидридный сдвиг) или метильной группы (скелетная изомеризация) вдоль углеводородной цепи  [c.120]

    Все же более вероятным нам представляется промежуточное образование переходного комплекса по ассоциативной схеме. С этой точкой зрения согласуются приводимые ниже данные об участии водорода каче-. стве второго компонента в реакции конфигурационной изомеризации, отсутствие продуктов дегидрирования и скелетной изомеризации в условиях мягкого протекания реакции, а также кинетические результаты. Они показали, что энергия активации реакции конфигурационной изомеризации сравнительно низка, в то время как для разрыва С—Н-связи (первая стадия образования переходного комплекса по диссоциативной схеме) требуются существенно большие затраты энергии. В состав пере- [c.70]


    Гидрогенолиз, в частности гидрокрекинг, на бифункциональных катализаторах связан, как правило, с промежуточным образованием карбениевых ионов. Поэтому он в большой мере включает в себя элементы и закономерности кислотно-основного катализа. На этих катализаторах существенную роль играют реакции скелетной изомеризации. [c.88]

    V.l. Св-Дегидроциклизация и скелетная изомеризация алифатических углеводородов на Pt- и Pd-катализаторах [c.193]

    В соответствии с этим при обсуждении механизма скелетной изомеризации углеводородов на ряде металлических катализаторов был сделан вывод [119], что реакция протекает более быстро в тех случаях, когда структура реагирующей молекулы такова, что возможно образование промежуточного соединения с пятичленным кольцом. Реакция по такому механизму протекает толь- [c.224]

    В работе >20], посвященной каталитическим превращениям углеводородов в присутствии Р1-черни, авторы также пришли к заключению о двух механизмах изомеризации— циклическом с промежуточным образованием циклопентанов и механизме сдвига связей. Важная роль при активации катализатора в обсуждаемой работе отводится кислороду, который в незначительных количествах присутствует в зоне реакции. В работах [121, 122] исследованы превращения алканов в присутствии напыленных Р1—КЬ- и Р1—8п-пленок, а также на нанесенных и ненанесенных 1г- и 1г—Аи-катализаторах. Пути протекания реакций Сз-дегидроциклизации — скелетной изомеризации обсуждены с позиций циклического механизма и механизма сдвига связей. [c.225]

    В работе [123] обсуждаются условия, в которых проявляется положительное и ингибирующее влияние водорода на реакции дегидроциклизации, гидрогенолиза, скелетной изомеризации и D—Н-обмена в присутствии Pt- и Ni-катализаторов. Показано, что скорость и направление превращений углеводородов, катализируемых металлами, зависят от содержания водорода в системе. Небольшие количества адсорбированного на поверхности катализатора водорода положительно влияют на превращение углеводородов (см. рис. 43). Так, водород, по мнению авторов [123], замедляет процесс диссоциативной хемосорбции углеводородов на поверхности металла  [c.228]

    С целью выяснения роли алкенов и водорода в процессе Сб-дегидроциклизации и изомеризации алканов исследованы [125] превращения 3-метилпентана, а также З-метилпентена-1, цис- и транс- изомеров 3-метилпен-тена-2 на платиновой черни при температуре 300—390 °С Е1 токе Нг и Не при ( азличном содержании Нг в газе-носителе. Выявлено четкое влияние концентрации Нг в газе-носителе на превращения (Сз-циклизация, скелетная изомеризация, образование метилциклопентана и бензола) 3-метилпентана и изомерных алкенов. Полагают [125], что скелетная изомеризация должна проходить через промежуточный поверхностный комплекс, общий для 3-метилпентана и 3-метилпентенов. Этому комплексу соответствует полугидрированное поверхностное состояние углеводорода, адсорбированного на двух центрах. При малом содержании Нг возникает сильное взаимодействие между углеводородом и металлом с образованием кратных связей углерод—платина, что приводит к образованию З-метилпентена-1 из 3-метилпентана и. к частичному покрытию поверхности катализатора коксом. При больших количествах Нг преобладает слабое взаимодействие, увеличивается время жизни промежуточного комплекса и протекают характерные реакции дегидрирование алкана с образованием 3-метилпентена, Сз-де- [c.229]


    Полимеризация Конденсация Ароматизация Скелетная изомеризация [c.132]

    Метилциклопентан [8, 75] и метилциклогексан подвергаются при контакте с дейтеросерной кислотой обмену водорода на дейтерий, но не претерпевают (в обнаруживаемой степени) скелетной изомеризации. Образование продуктов, содержащих более семи атомов дейтерия (чего следовало бы ожидать при замене смежных атомов водорода), указывает на некоторую миграцию метила. Конфигурация продуктов, получающихся в результате таких миграций, ничем не отличается от конфигурации исходных веществ. [c.50]

    Изомеризация углеродного скелета не имеет места ни при фотохимическом, ни при термическом хлорировании, если избегать температур, при которых происходит пиролиз при этом получается любой монохлорид, образование которого возможно без такой скелетной изомеризации [c.58]

    В случае металлцеолитных катализаторов лимитирующая стадия зависит от общей поверхности платины и размера кристаллитов металла для катализаторов с большой поверхностью металла лимитирующая стадия - скелетная изомеризация олефинов. [c.18]

    Нафтены чувствительны к изомеризации нри помощи серной кислоты, но в реакцию вступают только те из них, которые содержат третичный углеродный атом конечные продукты обязательно имеют третичный углерод. Метилциклопентан и метилциклогексан скелетной изомеризации не подвергаются, но этилциклопентан превращается в метилциклогексан [492]. Серная кислота в реакции с диметилциклогексанами вызывает перемещение метильной группы вокруг кольца [493]. [c.124]

    Реакция скелетной изомеризации образовавшегося изооктана обусловливает получение изооктанов другой структуры, в частности  [c.8]

    Стойкость эмульсии. Как уже упоминалось в главе III, во время отстоя эмульсии протекают вторичные ре- акции. При величине удельной поверхности эмульсии, близкой к 11 000—12 000 m I m , когда олефин практически полностью вовлекается в реакцию, влияние вторичных реакций начинает заметно сказываться лишь при времени отстоя, превышающем 90 мин. В этом случае вероятна реакция скелетной изомеризации полученных октанов. [c.97]

    В табл. 1 приведены для температур 300—1000 К термодинамические параметры для бутена-1 и поправки к этим величинам при увеличении длины углеродной цепи на группу СНг. По данным таблицы можно определить термодинамические параметры любых алкенов-1. Изменение термодинамических параметров при переходе от алкенов-1 (а-олефинов) к чыс-алкенам-2 и транс-алкенам-2 (к цис- - и гранс-р-изомерам) и от алкенов-2 к алкенам-3 (цис-у-и гранс-у-изомерам) даны в табл. 2 для того же интервала температур. Пользуясь этой таблицей, можно определить термодинамические параметры различных н-алкенов с внутренней двойной связью. Изменения термодинамических параметров при скелетной изомеризации алкена-1 с появлением в боковой цепи одной или двух метильных групп приведены в табл. 3. [c.8]

    Этот случай приближенно реализуется при структурной и цис-гранс-изомеризации алкенов. Если же происходит скелетная изомеризация, величины У] и могут быть различными. Поскольку, однако, в жидкой фазе скелетные изомеры, как правило, не образуются, для оценочных расчетов можно считать, что У]=Х]. При строгом же расчете нужно рассчитывать у по системе (1.24). [c.14]

    Ниже охарактеризованы структурная и скелетная изомеризации [c.143]

    Природа активных центров окиси алюминия. Поскольку окись алюминия активирует скелетную изомеризацию (что обычно связывают с кислотными свойствами АЬОз), были исследованы кислотные свойства ее поверхности. При этом было показано, что чистая АЬОз, полученная из изопропилата алюминия или действием аммиака на нитрат алюминия и прокаленная при 600— [c.151]

    Известно, что окись алюминия содержит центры различной кислотной силы [17, 25]. Слабокислотные центры ответственны за дегидратацию спиртов, среднекислотные — за перемещение двойной связи в олефине, сильные — за его скелетную изомеризацию. На 1 см поверхности АЬОз имелось сильнокислотных центров, в то [c.152]

    Реакции изомеризапии. В процессах термолиза углеводо — родов могут происходить, кроме распада, и реакции структурной и скелетной изомеризации радикалов  [c.25]

    Реакция гидрогенолиза в присутствии металлических катализа торов, как правило, сопровождается скелетной изомеризацией исходных углеводородов. Скелетная изомеризация углеводородов состава Сл— s, проходящая, по-видимому, через промежуточное образование 1,3-диадсорбированного соединения, обсуждается в литературе достаточно широко. Исследованы изомеризация бутанов и неопентана на пленках Pt [16, 21, 59, 60], превращения неопентана на нанесенных Pt-катализаторах и черни [34, 61]. Для изомеризации н-бутана и изобутана постулируются [21] поверхностные [c.97]

    В случае полиметилциклопентанов гидрогенолиз значительно осложняется реакциями деметилирования и скелетной изомеризации. Далеко идущие перегруппировки углеродного скелета происходят в тех случаях, когда из-за низкой реакционной способности исходной молекулы опыты проводят при 350 °С и выше, например для три- и тетраметилциклопентанов [163], в которых миграция и элиминирование метильных групп способствуют образованию таких циклопентановых углеводородов, которые легче подвергаются гидрогенолизу [350°С, (10% Р1)/А120з] (см. схему на с. 131). [c.130]


    В большом цикле работ Го и сотр. [71—73, 82, 83, 86—93] исследованы превращения насыщенных углеводородов (Сб-дегидроциклизация, скелетная изомеризация, гидрогенолиз циклопентанов, гидрокрекинг) в присутствии различных платиновых и других металлических катализаторов. Подробно изучены [73] изомеризация 2-метил-2- С-пентана, З-метил-З- С-пентана и гидрогенолиз метил- С-циклопентана при 270 °С в присутствии (10% Pt)/АЬОз. Состав продуктов превращения существенным образом отличался от состава катализатов, полученных ранее в присутствии (0,2% Pt)/Al203. Анализ полученных результатов привел к заключению, что перемещение и распределение метки С в продуктах реакции обусловлено рядом последовательных перегруппировок в адсорбированном на поверхности катализатора углеводороде перед стадией его десорбции в объем. Исходя из начальных концентраций продуктов реакции, в каждом случае обсуждается вероятность циклического или стадийного механизма сдвига связей. При этом важную роль играет дисперсное состояние активной металлической фазы — в данном случае платины. [c.203]

    Для объяснения низкой скорости скелетной изомеризации при значительной скорости переноса метки вдоль цепочки н-бутана высказано предположение [94], что в тех случаях, когда для протекания реакции необходимо образование первичного карбениевого иона, с большей скоростью образуется протонированный циклопропан. Через промежуточное образование последнего может, например, протекать изомеризация н-пентана в изопентан  [c.206]

    Таким образом, скелетная изомеризация алканов на бифункциональном катализаторе может протекать по двум механизмам классическому, с участием карбенне-вых ионов, а также через протонированный циклопропан. [c.206]

    Интересный цикл работ опубликован в последние годы Паалом и Тетени. Их работы посвящены изучению механизмов превращений (скелетная изомеризация, С5-и Сб-дегидроциклизация, гидрогенолиз) углеводородов различных классов в присутствии ряда ненанесенных ме- [c.222]

    В работе [164] исследовано влияние добавки хрома к алюмоплатиновому катализатору [Pt r = 5 l (по массе)] на механизм дегидроциклизации н-гексана. Авторы пришли к заключению, что ароматизация н-гекса-на на алюмоплатиновом и алюмоплатинохромовом катализаторах протекает по сходному механизму. Основными направлениями превращений н-гексана на обоих катализаторах являются гидрокрекинг, дегидрирование, скелетная изомеризация, Сб-дегидроциклизация и ароматизация. На основании кинетических данных высказано предположение об образовании при введении добавки хрома в алюмоплатиновый катализатор большого числа слабоактивных центров. [c.247]

    При алкилировании изопарафиновых углеводородов олефинами в присутствии серной кислоты, кроме основной, протекают побочные реакции, которые приводят к получению углеводородов различной разветвленности или аномальных по числу атомов углерода (например, н-бутана, изопентана, тексанов и т. п.) для упомянутого выше случая алкилироваиия и даже к образованию углеводородов других классов, например высокомолекулярных олефинов, нафтеновых углеводородов и др. Среди побочных реакций наибольшее значение имеет так называемое автоалкилирование изопарафиновых углеводородов, связанное с диспропорционированием водорода, а также деструктивное алкилирование, скелетная изомеризация, полимеризация олефинов и др. [c.7]

    Высокая кислотность серной кислоты предопределяет ее большую активность в реакциях, связанных с пере-.мещением протона и образованием карбоний-ионов. По мнению некоторых авторов, этим обу.ловлена меньшая избирательность серной кислоты, чем фтористоводородной, в реакция ал илирования, так ак в оптимальных для алкилирования условиях серная кислота способна ускорять и реакции скелетной изомеризации, гидрополи-мерпзации, миграции метильных групп и другие, лроис-ходящие с перемещением протона. [c.70]

    Из табл. 7 видно, что для н-алкенов Се и выше влияние температуры на равновесный состав смеси в основном такое же, как для бутенов и пентенов с ростом температуры увеличивается содержание алкена-1 и падает содержание гранс-алкена-2 и транс-алкена-3 в меньшей степени меняется содержание цыс-алкена-2 и ис-алкена-З. Если происходит скелетная изомеризация, в значительных количествах образуются 2-метилалкен-2 и 3-метилалке-ны-2. При низких температурах возможно образование значительных количеств 2,3-диметилалкена-2. [c.20]

    Некоторые исследователи отмечают, что окись алюминия совершенно не катализирует скелетную изомеризацию, а имеющиеся противоположные данные они объясняют возможными загрязнениями катализатора анионами киСлот. Однако это справедливо лишь для низких температур (< 200°С). В ряде работ показано, что окись алюминия, приготовленная из очень чистых веществ, обладает некоторой активностью при температурах выше 30О С. Например, при изомеризации н-пентенов на AI2O3 при 400 °С выход метилбутенов составлял 28% (масс.) на пропущенный -пентен [13]. [c.145]

    Изомеризующую активность окиси алюминия можно значительно повысить добавками фтора [18], хлористого [11], бромистого и фтористого водорода [13] (табл. 43), серной, фосфорной, борной, муравьиной и других кислот [19, 20]. Обработка окиси алюминия фтором (0,36%) ускоряет скелетную изомеризацию [18] содержание изобутена в фракции С4 при 400 °С и объемной скорости подачи сырья 500 ч составляет 23,6%, а степень превращения бутена-1 в побочные продукты не превышает 6,4%. При увеличении содержания фтора в катализаторе до 5% содержание йзо-бутена в фракции С4 повысилось до 36,4%, однако степень превращения бутена-1 в побочные продукты крекинга и полимеризации увеличилась до 89,6%. При обработке окиси алюминия хлористым водородом (см. табл. 42) образуется мало побочных продуктов и заметно увеличивается выход изобутена (при 400 °С от 15,5% на АЬОз до 28,8% на АЬ0з+НС1). [c.147]


Смотреть страницы где упоминается термин Скелетная изомеризация: [c.117]    [c.4]    [c.70]    [c.89]    [c.136]    [c.16]    [c.34]    [c.106]    [c.108]    [c.16]    [c.136]    [c.96]    [c.145]    [c.146]    [c.146]    [c.148]   
Смотреть главы в:

Синтез и применение непредельных циклических углеводородов -> Скелетная изомеризация




ПОИСК







© 2024 chem21.info Реклама на сайте