Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ртутны.м катодом щелочных растворов

    И связанного с этим уменьшения потенциала пары 2Н+/Н2 предупредить выделение водорода при электролизе можно также, проводя электролиз с ртутным катодом. Перенапряжение водорода на ртути особенно велико (около —1 в), поэтому применение ртутного катода дает возможность количественно выделять многие металлы, которые нельзя осадить на платине вследствие выделения водорода. Другое преимущество ртутного катода заключается в том, что выделяющиеся металлы образуют с ртутью амальгамы— разбавленные растворы этих металлов в ртути, и значительно меньше переходят в раствор (т. е. окисляются), чем эти же металлы в чистом виде. Вследствие этого на ртутном катоде можно выделить (при низкой концентрации Н+-ионов) даже щелочные металлы. Большое значение имеет применение ртутного катода для отделения Ре + и ряда других катионов от А1 +, Цз+ и т. д. [c.436]


    Получены данные по выделению Рт и при низких плотностях тока [8, 183, 202—205]. Опыты проводились при следующих условиях напряжение на электролитической ванне 9 в, плотность тока 3,98 ма/см , количество ртути 177 г, температура 30° С, объем исследуемого раствора 15 мл, pH раствора 7,0 концентрация цитрат-иона 1,3-10 М, концентрация карбоната щелочного металла ,95-10 М, продолжительность электролиза 60 мин. Ниже приведены данные по выделению Рт на ртутном катоде из растворов, содержащих карбонаты щелочных металлов [203]  [c.173]

    Выделение на ртутном катоде щелочного металла из водного раствора соли, как уже упоминалось ранее, возможно вследствие высокого перенапряжения водорода на ртути. [c.137]

    Выделение на ртутном катоде щелочного металла, а не водорода возможно потому, что выделение водорода происходит с большим перенапряжением, которое, например, при плотности тока 769 а/м равно 1,066 в. Следовательно, выделение водорода на ртутном катоде было бы возможно только при значительной его поляризации. Так, например, сколь-ко-нибудь значительное выделение водорода из нейтрального раствора, в котором обратимый потенциал водорода равен —0,415 в, возможно лишь при потенциале катода около —1,26 в. Наоборот, [c.571]

    Важнейшим методом разделения металлов является их электролитическое выделение на ртутном катоде. Поскольку перенапряжение водорода на ртути превышает 1 В, из раствора можно выделить многие металлы. Однако алюминий, скандий, титан, ванадий, вольфрам и некоторые другие даже и в этих условиях не могут быть выделены, а ионы щелочных и щелочноземельных металлов восстанавливаются только в щелочном растворе. Напротив, железо можно успешно удалить электролитическим путем из переведенного в раствор алюминиевого сплава. Указанный способ можно также применять для очистки растворов урана. Выделение веществ на ртутном катоде чаще всего проводят при контролируемом потенциале, опти- [c.265]

    Изучение поведения платинового и ртутного электродов показало, что платиновый электрод можно поляризовать катодно (относительно насыщенного каломельного электрода) только до —0,25 В в кислых, до - -0,68 В в нейтральных и до — 1 В в щелочных растворах. Напротив, анодная поляризация платинового электрода возможна до + 1 В в нейтральных растворах и до + 1,5 В — в кислых. Ртутному катоду в нейтральных и щелочных растворах можно задавать потенциалы до —2 В, однако анодная поляризация ограничена потенциалом + 0,35 В в связи с анодным окислением ртути. На ртутном электроде окисление можно проводить только в указанных пределах. [c.208]


    Щелочные металлы в свободном виде обычно получают электролизом расплава их галогенидов или гидроксидов. Укажите, какие электроды при этом используют и составьте уравнения электрохимических реакций. Объясните, почему оказывается возможным получать свободные щелочные металлы также путем электролиза водного раствора их солей, но с использованием только ртутного катода. В чем заключается роль ртути Как проводят выделение щелочного металла из амальгамы  [c.67]

    Источником получения галлия являются отходы, образующиеся в процессе получения алюминия и переработки цинковых руд. Разделение гидроксидов галлия и алюминия основано на различной растворимости их в воде. В щелочной среде гидроокись алюминия легче осаждается, чем гидроокись галлия. Галлий остается в щелочном растворе, из которого выделяется электролитическими методами (электролизом на ртутном катоде и т. п.). [c.187]

    ПОЛУЧЕНИЕ ХЛОРА И РАСТВОРОВ ГИДРОКСИДОВ ЩЕЛОЧНЫХ МЕТАЛЛОВ В ЭЛЕКТРОЛИЗЕРАХ С РТУТНЫМ КАТОДОМ [c.82]

    Метод получения хлора и растворов гидроксидов щелочных металлов в электролитических ваннах с ртутным катодом в отличие от метода со стальным катодом и фильтрующей диафрагмой позволяет получать непосредственно из ванны раствор [c.82]

    Ванна состоит из электролизера 1, разлагателя 2 и ртутного насоса 3. В электролизер / подают раствор хлорида металла и ртуть. В процессе электролиза на аноде 7 выделяется хлор и образуются сопутствующие примеси, а на ртутном катоде 6 — щелочной металл, образующий с ним сплав — амальгаму щелочного металла. Обедненный хлоридом металла раствор, хлоргаз и амальгаму выводят из электролизера. Амальгама щелочного металла попадает и разлагатель 2, в который подают воду. В разлагателе имеется графитовый катод 4, который электрически накоротко замкнут с амальгамой, являющейся в разлагателе анодом 5. В разлагателе в результате электрохимического процесса образуется концентрированный раствор гидроксида металла. Ртуть из разлагателя 2 ртутным насосом 3 перекачивается в электролизер. [c.83]

    У —ванна с ртутным катодом 7 — электролизер — разлагатель амальгамы щелочного металла 3 — насос для перекачки ртути 4 — узел дехлорирования анолита 5 — сатуратор 6 — узел очистки анолита 7 — узел очистки рассола 5 —выпарка очищенного рассола 9 — узел подготовки воды 10, И — охлаждение и фильтрация раствора гидроксида щелочного. металла 2—14 — узлы охлаждения, отмывки и сорбционной очистки водорода [c.90]

    В результате температура водорода снижается до 20 °С, из него конденсируется вода и ртуть. Содержание ртути в водороде после охлаждения до 20 °С не превышает 14 мг/м . Для дальнейшего снижения содержания ртути водород промывают в отмывочных колоннах 13 анолитом из ванн с ртутным катодом, либо хлорной водой, полученной при охлаждении хлоргаза, а затем щелочным раствором и водой для удаления следов активного хлора. При этом водород отмывается от ртути, которая растворяется в хлорной воде или анолите с образованием дихлорида ртути (сулемы). Остаточное содержание ртути в водороде после отмывки 0,1 мг/м . [c.91]

    Электролитическое выделение к а л и я. Метод основан на электролизе растворов солей калия (и других щелочных металлов) при 140—160 в и 0,1—0,2 а на ртутном катоде [729], по другим данным,— при 3,5 в и 0,25 а [1904] Электролиз продолжается 0,5—1,5 часа. Выделяющиеся металлы дают со ртутью амальгаму, которая при последующем действии воды разлагается с образованием едкой щелочи. К полученной амальгаме добавляют 0,1 N соляную кислоту, взбалтывают несколько часов на холоду или несколько минут при кипячении, избыток кислоты титруют О, N раствором едкой щелочи в присутствии ализарина Погрешность определения находится в пределах около 1% [226, 993, 1340, 1357, 2164, 2638] О приборах, необходимых для выполнения определения этим способом, см [1098, 1544] Таким путем определяют сумму щелочных металлов [c.103]

    Из различных методов очистки каустической соды, получаемой по методу электролиза с диафрагмой, промышленное применение нашел только метод экстракции примесей из щелочного раствора жидким аммиаком. Очищенная этим способом каустическая сода по качеству приближается к полученной электролизом с ртутным катодом, однако несколько уступает ей по чистоте. [c.14]

    Процесс электролиза водных растворов хлоридов щелочных металлов в электролизерах о ртутным катодом и диафрагмой [c.33]

    На катоде в электролизерах с ртутным катодом происходит разряд ионов щелочного металла с образованием амальгамы натрия или калия. При разложении этой амальгамы водой в разлагателях получают чистые растворы гидроокисей натрия или калия и водород. В электролизерах с твердым катодом на катоде происходит разряд молекул воды с выделением газообразного водорода и образованием соответствующей щелочи. При этом получают смешанные растворы щелочей и хлоридов. Суммарный процесс для электролиза с ртутным катодом ч [c.33]


    При проведении электролиза водных растворов хлоридов щелочных металлов на ртутном катоде происходит разряд ионов натрия [c.36]

    Jлempoлuз с ртутным катодом (щелочный раствор галлата с содержанием галлия 170-200 мг л) [c.415]

    Описаио применение амальгамы натрия, образующейся при электроли с с ртутным -катодом щелочного раствора сульфокислоты Интересно отметить, что и этом случае наблюдается отщепление не только а-, но и g-сульфогрупп при определенном их положении по отнощению к некоторым другим заместителям. [c.364]

    К металлам с высоким перенапряжением водорода относятся в первую очередь ртуть и свинец, а также цинк, олово, кадмий. Выделение водорода на ртути происходит при столь отрицательных потенциалах, что из водных растворов возможен разряд ионов щелочных и щелочноземельных металлов с образованием амальгам. При этом электрохимические свойства ртутного катода меняются повышается перенапряжение водорода, значения потенциала нулевого заряда резко сдвигаются в отрицательную сторону, приближаясь к таковы 1 для амальгам— (1,7—2,0 В) [81, 87]. На ртутном катоде может устанавливаться потенциал 2,0 В, что позволяет восстанавливать самые трудновосстанавливаемые соединения. Очень отрицательный потенциал нулевого заряда ртутного катода в растворах, содержащих катионы щелочных металлов, создает условия для адсорбции органических соединений и образования гидродимерных продуктов. [c.49]

    Получение щелочных металлов на твердом металлическом катоде практически невозможно ввиду большого различия потенциалов (<р —<2,71 в, Фн(рН=14)= —0,81 в). Однако выделение щелочных металлов из водных растворов осуществляется с применением жидкого ртутного катода. Напр ИЙ, растворяющийся в ртути, образует химические соединения Hg Na (плавление 154°) и HgzNa (плавление 353°). Потенциал амальгамы в водно.м 1-я. растворе Na l или NaOH равен [c.40]

    Электрохимическое производство химических продуктов составляет большую отрасль современной химической промышленности, Среди крупнотоннажных электрохимических производств на n piiOM месте стоит электролитическое получение хлора и щелочей, которое основано на электролизе водного раствора поваренной соли. Мировое электролитическое производство хлора составляет —30 млн, т в год. Хлорный электролиз принадлежит к числу наиболее старых электрохимических производств, начало ему было положено еще в 80-х годах прошлого века. В настоящее время используют два метода электролиза с ртутным катодом и с твердым катодом (диафрагменный метод). На ртутном катоде разряжаются ионы Na+ и образуется амальгама, которую выводят из электролизера, разлагают водой, получая водород и щелочь, и снова возвращают в электролизер. На твердом катоде, в качестве которого используют определенные марки стали с относительно низким водородным перенапряжением, выделяется водород, а электролит подщелачивается. Диафрагма служит для предотвращения соприкосновения выделяющегося на аноде хлора со щелочным раствором. На аноде обоих типов электролизеров выделяется хлор, а также возможен разряд ионов гидроксила и молекул воды с образованием кислорода. Материал анода должен обладать высокой химической стойкостью, В качестве анодов используют магнетит, диоксид марганца, уголь, графит, В последнее время разработаны новые малоизнашиваемые аноды из титана, покрытого активной массой на основе смеси оксидов рутения и титана. Эти электроды называются оксидными рутениевотитановыми анодами — ОРТА, [c.271]

    Рассмотрим принцип метода для случая, когда в растворе находятся ионы металлов, которые электролитически восстанавливаются на ртутном катоде раствор содержит также какой-либо сильный электролит— KNOз, NN401 или другую соль щелочного металла . В этот раствор опускают два электрода один из них, как правило, — катод, имеет малую поверхность, например капли ртути, вытекающие из очень тонкого капилляра. Анод — слой ртути с большой поверхностью на дне электролитического сосуда. Электроды соединяют с источником постоянного тока и постепенно повышают напряжение, наблюдая за изменением силы тока в зависимости от приложенного напряжения. Эта зависимость имеет неравномерный характер и выражается кривой с перегибами — волнами. Напряжение, при котором возникают эти волны, зависит от состава электролита и характерно для того или иного иона металла. Высота волн зависит от концентрации восстанавливающегося иона. Таким образом, по кривой зависимости силы тока от приложенного напряжения в данных условиях можно судить о составе и концентрации электролита, т. е. провести качественный и количественный анализ раствора. [c.482]

    Благодаря образованию сплава электродный потенциал смещается на величину АСгм1Р (ДОам — изобарно-изотермический потенциал образования амальгамы, Дж/моль М+ (Р — постоянная Фарадея, Кл-моль ) и становится в случае электролиза раствора хлорида натрия почти на 1 В положительнее потенциала выделения металлического натрия. Наряду с выделением щелочного металла, образующего амальгаму, на ртутном катоде возможно выделение водорода, равновесный потенциал которого много положительнее стационарного потенциала амальгамного электрода. Однако заметному выделению водорода на ртутном катоде препятствует высокое перенапряжение этой реакции на ртути. [c.84]

    Следует отметить, что плотность тока выделения водорода в существенной степени зависит от условий электролиза, главным образом от наличия загрязнений на поверхности ртутного катода. Содержащиеся в растворе примеси, например ионы железа и других металлов, разряжаются на катоде, что приводит к увеличению вязкости ртутного катода, снижению линейной скорости его протекания и, в некоторых случаях, появлению на поверхности ртутного катода островков выделившихся металлов, на которых перенапряжение водорода существенно ниже, чем на ртути. Все это способствует ускорению выделения водорода, подщелачиванию раствора электролита, повышению концентрации в растворе хлороксидных соединений и снижению выхода по току щелочного металла как за счет ускорения выделения водорода на катоде, так и за счет увеличения плотности восстановления растворенного хлора и хлороксидных соединений. Поэтому основными условиями достижения высоких выходов по току щелочного металла являются хорошее перемешивание ртутного катода, что достигается при высокой линейной скорости его движения, и высокая чистота поступающего на электролиз раствора хлорида металла, а также достаточно высокая плотность тока электролиза, существенно превышающая скорость побочных реакций. [c.87]

    На анодах при работе электролизера выделяются хлор и кислород или диоксид углерода в зависимости от вида используемых анодов. Кроме того, с анодным газом смешивается водород, образующийся на ртутном катоде. При норма 1ьных условиях электролиза хлоргаз содержит 0,5% (об.) водорода. Однако при нарушениях процесса электролиза, например при нарушении циркуляции ртути либо попадании в раствор или ртутный катод железа и примесей (так называемых амальгамных ядов —хрома, ванадия и некоторых других) возможно усиленное выделение водорода. Это, помимо снижения выхода по току щелочного металла на катоде, приводит к снижению качества хлоргаза и за счет подщелачивания раствора резко повышает содержание растворенного хлора в анолите, что может нарушить в дальнейшем стадию очистки раствора. При заметном повышении содержания водорода в хлоргазе отдельных ванн эти ванны должны быть отключены и устранены причины (повреждение гуммировочного слоя, снижение скорости циркуляции ртути и др.), приведшие к повышению содержания водорода в хлоргазе. [c.91]

    Гидрокоричная кислота может быть получена восстановлением коричной кислотьг. амальгамой натрия иодистоводородной кислотой при 100° фосфором и иодистоводородной кислотой амаль-]амой цинка и соляной кислотой , электролитическим восстановлением коричной кислоты в щелочном растворе на свинцовом и ртутном катодах каталитическим восстановлением в присутствии палладиевой черни и действием цианистого калия на -фенилэтилхлорид с последующим омылением [c.163]

    Электролизом на ртутном катоде отделяются следующие металлы Ре, Сг, Со, N 1 Си, 2п, Мо, Сс1, 5п, РЬ, В , Н , Т1, 1п, Ga, Ge, Ag, Аи, Pt, Рс1, КЬ, 1г, Ке. Не отделяются А1, Т , 2г, V, и, ТЬ, Ве, NЬ, Та, W, Р, Аз, 8с, У, РЗЭ, Mg, щелочные и щелочноземельные металлы. Марганец отделяется неполностью, часть его окисляется до МпОа и выделяется на аноде, может также окислиться до Мп04", окрашивая раствор в малиновый цвет. Дюбель и Флюршютц [689] считают, что если во время электролиза в электролит добавить несколько капель 30%-ной перекиси водорода, то достигается количественное отделение марганца. Хром медленно удаляется при электролизе. Поэтому при анализе сталей, содержащих > 5% хрома, большую часть его рекомендуется отделять до электролиза в виде хлорида хромила [555]. Небольшая часть железа всегда -остается в электролите. Однако эти остающиеся количества железа не мешают во многих фотометрических методах определения алюминия, если восстановить железо аскорбиновой кислотой до Ре (П). В электролите могут остаться также следы хрома и молибдена. [c.191]

    Сульфат европия (2 ) получают катодным восстаиовле-нкем сульфата трехвалентного европия, восстановлением амальгамой щелочных металлов или стронция, а также восстановлением хлорида европия (3+) в редукторе Джонса амальгамированным цинком с взаимодействием вытекающего раствора ЕиОг с серной кислотой [1, 2, 5, 6]. Описан способ получения европия сернокислого закисного путем электролиза ацетата европия и цитрата калия на ртутном катоде с после.а ующим разложением нолучеиной амальгамы европия горячей разбавленной сериой кислотой [3]. [c.112]

    Оксимы. среди азометиновых производных гидроксиламина наибольший интерес представляют обычные оксимы, и поэтому их электрохимическое поведение неоднократно исследовалось методами полярофафии и препаративного алектролиза [295, 352—354]. Большинство оксимов способны восстанавливаться в кислой среде, н лишь некоторые — в щелочной. Данные полярографии свидетельствуют о том, что электрохимической активностью в кислых н нейтральных средах обладает только протонированная форма оксима- Классическое восстановление в серной кислоте на свинцовых катодах или восстановление при контролируемом потенциале в кислом растворе на ртутных катодах протекает с участием четырех электронов и приводит [c.347]

    В конце XIX в. были разработаны и предложены промышленные методы получения хлора и каустической соды электролизом водных растворов хлоридов щелочных металлов по способу как с твердым катодом и диафрагмой, так и с ртутным катодом. Первые промышленные установ1 и электролиза водных растворов хлорида натрия возникли в Европе и Северной Америке в 1892 г. [c.10]

    Процессы электролиза растворов хлоридов щелочных металлов с ионообменными диафрагмами достаточно хорошо изучены в лаборатории и дальнейшее развитие этого метода в настойцее время лимитируется отсутствием диафрагм, пригодных для создания крупных промышленных электролизеров. Применяемые для этой цели ионообменные мембраны не обладают 100%-ной селективностью, что не позволяет получать столь же чистую каустическую соду, как и по методу электролиза с ртутным катодом. Без разработки мембран с достаточно высокой селективностью нельзя рассчитывать на успешное использование этого метода. [c.19]

    Электролизер с ртутным катодом состоит из электролитической ячейки, в которой в процессе электролиза получается хлор и амальгама щелочного металла, и разлагателя амальгамы. В разлагателе образуется раствор каустической соды и водород и регенерируется ртуть. С помощью насоса либо иного устройства обеспечивается постоянная циркуляция амальгамы (ртути) по циклу злектролити-ческая ячейка — разлагатель. Если ртуть используется в качестве биполярного электрода, необходимость в разлагателе амальгамы отпадает, однако многие предположения, касающиеся разработки схемы и конструкции электролизеров с биполярными ртутными электродами и диафрагмой [65—68], не нашли практического применения. Это объясняется конструктивными трудностями и опасностью анодного растворения ртути вследствие неравенства катодного и анодного выходов по току. [c.156]


Смотреть страницы где упоминается термин ртутны.м катодом щелочных растворов: [c.364]    [c.309]    [c.400]    [c.226]    [c.175]    [c.383]    [c.387]    [c.181]    [c.380]    [c.390]    [c.111]    [c.117]    [c.65]   
Аналитическая химия. Кн.2 (1990) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Катод

Катод ртутный

Получение хлора и растворов гидроксидов щелочных металлов в электролизерах с ртутным катодом

Процесс электролиза водных растворов хлоридов щелочных металлов в электролизерах с ртутным катодом и с диафрагмой

Растворы щелочные

ртутный



© 2025 chem21.info Реклама на сайте