Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Моносахариды и оснований

    А. М. Бутлеровым исторический синтез моносахаридов, основанный на уплотнении формальдегида. [c.310]

    Огромным вкладом в науку явился осуществленный А. М. Бутлеровым исторический синтез моносахаридов, основанный на уплотнении формальдегида. [c.346]

    Простой гидролиз, разумеется, не может дать достаточного представления о том, каким образом соединены друг с другом основные составные части в молекуле полисахарида. Значительно ближе к цели ведет способ, основанный на том, что гидроксилы полисахарида сначала метилируют, а затем полученное соединение осторожно гидролизуют. При этом получаются метилированные моносахариды, строение которых можно установить обычными методами (Хез орс, Ирвин). [c.445]


    Нуклеиновые кислоты представляют собой полинуклеотиды, состоящие из трех составных частей азотистых оснований (пуриновых или пиримидиновых), моносахаридов (о-рибозы или 2-дезокси-1>рибозы) и фосфорной кислоты. Макромолекула нуклеиновой кислоты схематически изображена на рис. 50. [c.216]

    Такой способ отнесения зеркально-изомерных моносахаридов к О- и -ряду основан на сопоставлении их пространственного [c.224]

    Молекула ДНК состоит из мономеров, называемых нуклеотидами, которые удерживаются вместе химическими связями в линейной последовательности, называемой полинуклеотидной цепью или молекулой нуклеиновой кислоты. Каждый нуклеотид состоит из трех составных частей молекулы фосфорной кислоты, молекулы моносахарида дезокси-рибозы (см. разд. 13.6) и молекулы азотсодержащего соединения, называемого азотистым основанием. Молекулы моносахарида и фосфорной кислоты конденсируются, образуя длинные полинуклеотидные цепи [c.454]

    Прежде всего можно определить его физические константы. Самые обычные и легко измеряемые из них — температура плавления и удельное вращение. После этого пора обратиться к литературе — не был ли описан ранее моносахарид с такими константами И если окажется, что был описан, у исследователя появляется, нет, не уверенность, но только основание для предположения о том, что его моносахарид идентичен известному, и, следовательно, право предположительно приписать ему определенную структуру. Почему же только предположительно А вот почему. [c.56]

    Мы обещали касаться только вполне современных методов исследования, и не без оснований классику легко найти в любом учебнике . И все-таки хочется отступить от этого принципа и описать методы, с помощью которых были впервые выяснены конфигурации асимметрических центров важнейших моносахаридов. Это — классическая работа Эмиля Фишера . Изложим ее несколько упрощенно, стараясь сохранить главное — логику исследования. [c.60]

    Из схемы J.б. очевидно, что два атома кислорода при одном углероде (С) как пиранозной, так и фуранозной форм моносахарида — это уже достаточное основание для создания [c.52]

    Есть основание предполагать, что некоторое защитное действие на гемицеллюлозы оказывает не перешедший еще в раствор лигнин. Последний, переходя в растворимое состояние к концу варки, задерживает растворение части гемицеллюлоз, вследствие чего они гидролизоваться до моносахаридов не успевают. [c.351]

    Известно, что потеря моносахаридов за счет образования альдоновых кислот тем больше, чем больше бисульфита содержится в варочной кислоте. На этот процесс оказывает влияние и характер основания в варочной кислоте [10]. Так, наибольший эффект превращения моносахаридов в альдоновые кислоты наблюдается в присутствии аммиака. Магний дает несколько меньший эффект, кальций еще меньший, а натрий оказывается в этих условиях наименее активным. По-видимому, этим объясняется повышенное содержание моносахаридов в сульфитном щелоке на натриевом основании по сравнению с кальциевым. [c.352]


    Конфигурация каждого из приведенных моносахаридов, число которых точно соответствует предсказанному на основании стереохимической гипотезы, была установлена Фишером путем взаимных превращений одного моносахарида в другой. [c.15]

    Другой химический прием, оказавший также неоценимую услугу при установлении конфигурации моносахаридов, был основан на сравнении их озазонов (XX), т. е. производных, получающихся, конденсацией [c.15]

    Метод Безекена. Методом, которым впервые была определена конфигурация аномеров, является метод, развитый Безекеном и основанный на способности моносахарида, содержащего а-гликольную группировку, образовывать циклические эфиры с борной кислотой. [c.42]

    В настоящее время имеется несколько методов частичного определения конформации, косвенно подтверждающих правильность предсказанной конформации моносахаридов. Один из них основан на способности. моносахаридов к образованию внутрикомплексных соединений с солями меди. Эти соединения только при определенном взаимном положении обеих гидроксильных групп, образуют внутрикомплексный цикл. Другой метод основан на различном поведении аксиальных и экваториальных гидроксильных групп при окислении тетраацетатом свинца. Эти методы еще не являются достаточно общепринятыми, а полученные с их помощью результаты — бесспорными. Тем не. менее, проверка, проведенная этими методами, подтвердила те предсказания, которые были сделаны на основании приведенных выше правил. [c.53]

    Гидролиз бензоатов осуществляется также в присутствии оснований, причем в этом случае обычно применяется метилат натрия в метаноле. Бензоаты устойчивы к действию аммиака, и это позволяет из смешанных сложных эфиров моносахарида избирательно удалить ацетильные группы, не затрагивая бензоильных. [c.67]

    Метод Саудена—Фишера. Этот сравнительно новый метод наращивания цепи в моносахаридах основан на известном синтезе карбонильных соединений из нитросоединений (реакция Нефа). Он может быть представлен следующей схемой синтеза гексоз из арабинозы. [c.22]

    Метод Хэдсона — Джексона. Этот просто п изящный метод определения конфигурации гликозидного центра в гликозиде, а следовательно и в соответствующем ему аномере моносахарида, основан на выделении продукта окисления гликозида йодной кислотой и определении величины вращения. При окислении йодной кислотой метилглико-зида и последующего окисления получающегося диальдегида бромной водой образуется двухосновная кислота, которая идентифицируется в виде бариевой или стронциевой соли. При окислении любого моносахарида (за исключением дезоксисахаров) может образоваться одна из четырех стереоизомерных кислот, конфигурация которых зависг1Т только от конфигурации у С(1) и С(5) (или С(4) у пентоз) и не зависит от конфигурации других С-атомов (С(2>, С(з> и С(4)) . а-О-гликозид и а-ь-гликозид дают одну пару антиподов, Р-О-и р-ь-гликозиды — другую пару антиподов, диастереомерную первой. Эти пары диастереомеров отличаются одна от другой физическими свойствами, в частности для а-О- и а-Ь-пары характерны бариевые соли, [5-0- и р-ь-пара дает характерные стронциевые соли. На основании этого исходный гликозид можно отнести либо к тому, либо к другому типу (см. схему на стр, 45). [c.44]

    Из вышеизложенного следует, что моносахариды в растворах существуют в виде смеси таутомерных оксикарбонильной и полу-ацетальных форм, взаимно переходящих друг в друга. При таких таутомерных превращениях каждый отдельный моносахарид сохраняет свою химическую и биологическую индивидуальность. Поэтому классификация моносахаридов, основанная на первоначальных представлениях о полиоксикарбонильном строении этих веществ, сохранилась и после открытия их таутомерных превращений. [c.290]

    Первые работы по использованию благородных металлов -для гидрирования углеводов, в частности моносахаридов, относятся к 60-ым годам. Это были, в первую очередь, рутений, палладий и платина, нанесенные на различные носители [34]. В составе сплавных катализаторов благородные металлы использовались как промоторы никеля Ренея [22, 35], так как промотирование палладием, рутением, платиной и родием создает благоприятные условия для активации как водорода, так и двойных связей. Поскольку гидрирование глюкозы осуществляется в слабощелочной среде, в которой равновесие сильно смещено в сторону енольной формы, это дает основание считать, что добавление к скелетному никелю [c.42]

    На основании принципов структурного и энергетического соответствия мультиплетной теории катализа в реакциях гидрирования карбонилсодержащих соединений, в частности моносахаридов, показана высокая активность катализаторов рутений на угле [38]. и на окиси алюминия [39]. Принцип структурного соответствия (два атома молекулы налагаются на два атома металла-катализатора с учетом сохранения валентного угла) позволял ожидать максимума активности в ряду металлов-катализаторов гидрирования, расположенных по величине их наименьших атомных радиусов. Соответствующий расчет показывает, что из трудно растворимых в кислотах металлов (процесс гидролитического гидрирования, для которого подбирался высокоактивный гидрирующий катализатор, протекает в кислой среде) для гидрирования связи С = 0 ближе всего подходит рутений. Высокая активность рутения в отношении гидрирования связи С = 0 подтверждена и энергетическим соответствием мультиплетной теории. [c.43]


    Это позволило определить строение аминокислоты, из которой получен данный метилтиогидантоин. Новые сведения о порядке чередования аминокислотных остатков в коротких пептидах были получены па основанни исследоваиия масс-спектров этиловых эфиров ацетилпептидов, аминоспиртов и диаминоспиртов [208, 209]. В работе Н. К. Кочеткова и сотрудников масс-спектрометрический метод использовался для определения размера цикла в метиловых эфирах моносахаридов [210], установления конфигураций гликозидной связи в метилглюкозидах [211] и выяснения места свободного гидроксила в частично метилированных моносахаридах [212, 213]. [c.124]

    По наличию функциональных групп моносахариды делят на альдозы (глюкоза, галактоза, манноза) и кетозы (фруктоза). Наиболее значимыми представителями моносахаридов являются глюкоза и фруктоза, строение которых было доказано на основании химических свойств. [c.245]

    Перечисленные выше основания, соединяясь с ри-бозой или дезоксирибозой), образуют нуклеози-ды. Эти соединения были выделены при гидролизе нуклеиновых кислот. В нуклеозидах азотистое основание связано с остатком рибозы (или дезок-сирибозы) посредством С —К-связи, в формировании которой участвует полуацетальная гидроксигруппа моносахарида и водород группы — МН  [c.422]

    Неизмеримо важную роль в биологии играют производные моносахаридов, называемые нуклеозидами и нуклеотидами. Нуклеозиды— это азотистые аналоги гликозидов, или Ы-гликози-ды, представляющие собой соединение моносахаридного элемента (о-рибозы или 2-дезокси-п-рибозы) с азотистым (пиримидиновым или пуриновым) основанием (разд. 7.6.1)  [c.207]

    Нуклеиновые кислоты — высокомолекулярные соединения с молекулярными массами от 200 ООО до нескольких миллионов. При полном гидролизе нуклеиновых кислот образуются смесь азотсодержащих гетероциклических оснований (пиримидинов и пуринов), моносахарид пентоза (рибоза или дезоксирибоза) и фосфорная кис- лота  [c.348]

    Еще в 1871 г. в печати появились первые данные о том, что в клеточных ядрах содержатся органические вещества, для которых характерно присутствие в молекуле азота и фосфора. Впоследствии эти вещества получили название нуклеиновых кислот. Было показано, что они представляют собой полимеры, в состав которых входят гетероциклические основания (аденин, гуанин, цитозин, урацил, тимин, а иногда и другие), моносахарид пентоза (рибоза или дезоксирибоза) и фосфорная кислота. Общую структуру нуклеиновых кислот можно представить схемой (вертикальной линейкой обозначены остатки пентозы, В — остатки гетероциклических оснований, Р — фосфодиэфирные группы) [c.644]

    Итак, главные источники структурного и функционального многообразия моносахаридов лежат в различном наборе функциональных групп (карбонильные, гидроксильные, карбоксильные, аминогруппы и т. д.) и в не меньшей степени в различиях стереохимии. Последнее надо особо подчеркнуть. В обычном курсе органической химии рассматривают свойства и различия отдельных классов соединений, основанные в первую очередь на различиях бут-леровских структур, и отдельно в виде некоего несколько экзотического приложения — вопросы стереохимии. В химии сахаров такого разделения не может быть. В принципе вся эта область есть органическая стереохимия par ex ellen e , и все многообразие свойств углеводов проистекает прежде всего из их стереохимических различий. Так, например, кардинальные различия свойств и биологической функции целлюлозы и одного из двух компонентов крахмала — амилозы — обусловлены различием кон фигурации лишь одного асимметрического центра элемен тарного звена этих стереоизомерных полисахаридов. [c.10]

    Обратите внимание, какой контраст составляют эти заключения с теми, которые можно было бы вывести из проекции Фишера (ср. формулы 9 и 10). Так, может показаться, что в глюкозе гидроксил при С-3 стоит особняком, а остальные скучены по одну сторону молекулы, тогда как в галактозе кажется, что гидроксилы при С-3 и С-4 (слева от оси формулы 10) сходны между собой и отличны от остальных. На основании формул типа 27 и 28, так называемых конформационных формул, можно, не прибегая к эксперименту, достаточно обоснованно предсказать множество химичесхсих и физических особенностей веш,ества. Сравнение формул 27 и 28 позволяет, например, оценить относительные скорости окисления глюкозы и галактозы перйодатом (104) и даже в обш,их чертах ход кинетической кривой этой реакции для галактозы, оценить относительное поведение этих сахаров при хроматографии на бумаге, предсказать характерные особенности спектров ядерного магнитного резонанса и даже высказать достаточно обоснованные предположения о том, почему именно глюкоза, а не какой-либо иной моносахарид занимает доминирующее положение в углеводном обмене любой живой системы. [c.16]

    Согласно предложению Хеуорса, формулы всех циклов представляют схематически плоскими, что удобно для представления взаимного расположения гидроксильных групп, а для пяти-члеиных циклов это близко к истине При анализе циклических структур моносахаридов первое, что мы можем отметить — ЭТО исчезновение карбонильной функции и появление новой гидроксильной функции при С (называемой полуацетальной вообще или гликозидной, применительно к углеводам) и, соответственно, нового асимметрического центра при этом же углеродном атоме Так вот, в силу планарности карбонильной группы,присоединение реагента к ней возможно с обеих сторон плоскости, результатом чего является пара циклических изомеров (диастереомеров), называемых а- и 3-формами (а- и р-аномерами) А во-вторых, возникает вопрос, что же является истиной для моносахаридов в структурном плане" Многочисленными пионерскими работами в начале двадцатого столетия, основанными на [c.35]

    Биосинтез А. основан на ферментативных превращениях нейтральных моносахаридов в А. в составе нуклеозидди-фосфатсахаров. В биосинтезе глюкозамина из глюкозы источником 1 Н2 является группа ONH2 аспарагина. [c.144]

    МУТАРОТАЦИЯ (от лат. muto - изменяю и rotatio-вращение), самопроизвольное изменение величины оптич. вращения свежеприготовленных р-ров оптически активньгх соединений. Характерна для моносахаридов, восстанавливающих олигосахаридов, лактонов и др. Катализируется к-тами и основаниями. [c.153]

    НУКЛЕОЗЙДЫ, прир. гликозиды, молекулы к-рых состоят из остатка пуринового или пиримидинового основания, связанного через атом N с остатком О-рибозы илн 2-дезок-си-О-рибозы в фуранозной форме в более широком смысле-прир. и синтетич. соед., в молекулах к-рых гетероцикл через атом N или С связан с любым моносахаридом, иногда сильно модифицированным (см. Минорные нуклеозиды). В зависимости от входящих в молекулу остатков моносахарида и гетероциклич. основания различают рибо- и дезокси-рибонуклеозиды, пуриновые и пиримидиновые Н. [c.303]

    В другой серии исследований [6] анализ древесины сосны по годовым кольцам проводился более подробно, с количественным хроматографическим определением всех моносахаридов, входящих в состав легко- и трудногидролизуемых гемицеллюлоз. Исследованию подвергалась древесина сосны (Pinus silvestris) в возрасте 111 лет при высоте 26 м. Пробы отбирались на поперечном срезе, сделанном на высоте 1,3 лг от основания. Диаметр ствола в этом месте был равен 45 см без коры. Полученные при этом данные приведены в табл. 62. [c.304]

    Метод Вольфрома. Этот метод может быть применен лишь в некоторых случаях, но привлекает своей простотой. Он основан на введении нового углеродного звена в молекулу моносахарида с помощью диазометана и пригоден для превращения альдоз в кетозы, дезоксикетозы и озоны. Он может быть проиллюстрирован следующей схемой  [c.23]

    Распад по Руффу. Этот наиболее старый метод не является строго избирательным, однако в силу своей простоты он до сих пор широко применяется. Метод основан а окислении альдозы перекисью водорода в присутствии солей трехвалентного железа, обычно в присутствии ацетата. Несколько худшие результаты дает применение солей двухвалентного железа. В результате окисления углеродный атом карбонильной группы моносахарида (XV) отщепляется в виде углекислоты, а атом, следующий за мим в цепи, окисляется до альдегидной группы, в результате чего образуется низший моносахарид (XVI). Механизм реакции Руффа остался невыясненным. Принято считать, что вначале происходит окисление альдегидной группы моносахарида до карбоксильной группы (формула XVII), затем окисляется а-углерод-нын атом, в результате чего образуется а-кетокислота (XVIII), которая распадается обычным для а-кетокислот путем с отщеплением СО2 н образованием нового карбонильного соединения. [c.25]

    Таким образом, результаты, полученные при использовании метода Хеуорзса, дают возможность однозначно судить о размере окисного кольца в исходном. моносахариде. В настоящее время при выяснении вопроса о структуре моносахаридов обычно используют оба пути, т. е. окисляют метилированный сахар до двухосновной кислоты и до лактоиа метилированной одноосновной кислоты и сличают результаты обеих операций, на основании чего делается вывод о размере кольца. [c.35]


Смотреть страницы где упоминается термин Моносахариды и оснований: [c.176]    [c.304]    [c.14]    [c.343]    [c.356]    [c.394]    [c.551]    [c.104]    [c.63]    [c.600]    [c.303]    [c.304]    [c.28]   
Химия углеводов (1967) -- [ c.97 , c.104 ]




ПОИСК





Смотрите так же термины и статьи:

Моносахариды



© 2024 chem21.info Реклама на сайте