Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коалесценция на поверхности жидкости

    Пены и эмульсии — это дисперсные системы, которые состоят соответственно из газа, диспергированного в жидкости, и жидкости, диспергированной в другой жидкости. В отличие от золей, представляющих собой частицы твердого вещества, диспергированного в жидкости, пены и эмульсии характеризуются тем, что межфазная граница в них разделяет два вещества, обладающие текучестью. По этой причине форма частиц в этих системах определяется условием минимума поверхности при данном объеме. В разбавленных пенах и эмульсиях частицы дисперсной фазы приобретают сферическую форму. При более высокой концентрации дисперсной фазы ее частицы вследствие взаимного сжатия деформируются, образуя определенного вида полиэдры (в монодисперсных системах образуются правильные гексаэдры). Процесс разрушения дисперсной системы в пенах и эмульсиях не ограничивается только слипанием частиц (коагуляцией), но может продолжаться до полного их слияния, т. е. коалесценции. [c.221]


    Между нижним электродом и поверхностью водной фазы возникает электрическое поле, которое способствует коалесценции относительно крупных капель воды. При низком уровне воды напряженность поля недостаточна для воздействия на эмульсию, а при высоком уровне воды электропроводность столба жидкости между зеркалом воды и нижним электродом увеличивается настолько, что возникает опасность замыкания на корпус. [c.67]

    При очистке материалов, характеризующихся низкой величиной поверхностной энергии, коэффициент растекания не имеет решающего значения, поскольку в процессе стирки не наступает самопроизвольного смачивания, как это наблюдается для некоторых гидрофильных волокон. Иначе говоря, для гидрофобных поверхностей специфическое влияние ПАВ сказывается, главным образом, на коалесценции, потому что отрыв частиц загрязнений происходит благодаря механическим воздействиям. Такое отделение капелек масла от подложки требует сравнительно малых затрат энергии, равных приблизительно работе образования новой поверхности жидкости ( ЪО эрг см ). [c.132]

    КОАЛЕСЦЕНЦИЯ КАПЕЛЬ НА ПОВЕРХНОСТИ ЖИДКОСТИ [c.258]

    В настоящее время стабилизующее действие тонких ( черных ) пленок объясняют на основе описания состояния свободных жидких пленок с точки зрения теории Дерягина и Ландау [186 — 188], Вервея и Овербека [189, 190]. Сейчас уже опубликовано довольно много исследований тонких пленок, в которых показано существование в них сил притяжения, обусловливающих стабильность пленки [191, 192]. Попытки установления механизма сближения двух капель в жидкой среде или подхода капли к межфазной поверхности жидкость — жидкость предприняты многими авторами [193—198]. Гидродинамические явления, сопровождающие сближение капель, зависят от размера капель и скорости их сближения. Однако до сих пор механизм коалесценции чистых капель жидкости нельзя считать полностью ясным. [c.247]

    Сила тяжести стремится отделить газ от жидкости в дисперсионной системе, принуждая пузырьки подниматься к поверхности жидкости, а жидкость, содержащуюся в стенках пузырьков, стекать вниз к основной массе жидкости. Поверхностное натяжение способствует коалесценции и исчезновению пузырьков. Все эти причины в конечном счете приводят к разрыву пленки жидкости, составляющей стенки пузырей. [c.85]

    Выбор геометрических параметров камеры струйной флотационной машины определяется гидродинамическими условиями в пузырьковом конусе, образующемся в жидкости. Глубина камеры при падении струи на поверхность жидкости должна быть несколько больше максимальной глубины погружения пузырька, а глубина погружения и диаметр патрубка, отделяющего зону пузырькового конуса от остальной части камеры,— соответствовать размерам конуса. Установлено, что глубина погружения пузырьков Яс=5,1 При диаметре насадка 6 мм увеличение скорости потока пульпы и-п от 4 до 10 м/с повышает глубину зоны (конуса) аэрации с 15 до 30 см. Максимальный диаметр пузырькового конуса при этом не превышает 2 см (экспериментальные данные). Средний размер пузырьков по мере погружения водовоздушной струи увеличивается вследствие коалесценции. Их начальный размер определяют по формуле с бо=1,5-10 8. [c.138]


    Роль пеногасителя в кипящих водных растворах сводится, по-видимому, к гидрофобизации пленок пузырьков пены и одновременному выталкиванию из пленок частиц мелкодисперсной фазы, участвующих в стабилизации пузырьков пены [6]. В тех местах, где имеются частицы пеногасителя, прочность пленок пены резко снижается и пузырьки разрушаются. Фотографирование кипящего раствора показало, что в отсутствие пеногасителя образуются маленькие пузырьки, поднимающиеся на поверхность жидкости без коалесценции, в присутствии же пеногасителя небольшие пузырьки быстро коалесцируют с образованием крупных пузырей на поверхности и в объеме жидкости. [c.230]

    Поверхность раздела фаз. Процесс возникновения новой фазы, например при конденсации пара, замерзании жидкости или осаждении растворенного вещества из раствора, можно представить следующим образом. Сначала молекулы образуют небольшие скопления (кластеры), насчитывающие от 2 до 100 молекул, которые постепенно растут и превращаются в более или менее крупные капельки или кристаллики. Этот процесс за счет их роста или коалесценции продолжается до тех пор, пока они не становятся видимыми невооруженным глазом. Кластеры, именуемые в зависимости от размеров зародышами или ядрами, являются предшественниками образования новой фазы. [c.191]

    Еще одним стабилизатором эмульсии являются твердые частицы, например пыль, попадающая в двигатель или механизм извне, а также твердые продукты глубокого окисления масла или износа трущихся деталей. Объясняется такая роль частиц тем, что при конечном краевом угле между твердой частицей и двумя жидкими фазами на поверхности раздела жидкость — жидкость частица занимает устойчивое положение. Чтобы удалить ее с поверхности раздела, требуется затратить определенную работу, поэтому коалесценция затруднена. Следовательно, одним из эффективных средств борьбы с эмульгируемостью масел при эксплуатации является постоянное и тщательное их фильтрование. [c.194]

    При накоплении на поверхности раздела фаз в системе жидкость-жидкость посторонних примесей взвешенный слой капель может разрушаться. Для того чтобы предотвратить этот процесс в работе [170] предложена распылительная колонна специальной конструкции с расширяющейся верхней частью. В такой колонне увеличение скорости коалесценции на поверхности раздела приводит к понижению этой поверхности в конической части колонны, что в свою очередь уменьшает площадь поверхности раздела и восстанавливает скорость коалесценции, не давая возможности плотному слою разрушаться. [c.99]

    В настоящее время разработано достаточное количество моделей коалесценции капли у поверхности раздела фаз жидкость— жидкость. Уравнения моделей выводятся на основе макроскопических балансов массы, силы и энергии и уравнений изменения микроскопических объемов жидкости и изменения поверхностей раздела фаз. Граничные условия и выражения для потока вместе с уравнениями состояния позволяют замкнуть систему уравнений для данной физической ситуации. Однако обобщенная полная система уравнений сложна для решения. Поэтому использование аппроксимирующих решений различной точности является наиболее распространенным методом. К сравнительно простым моделям можно отнести модели жесткой капли и жесткой поверхности раздела [32] и модели с учетом деформации капли и поверхности раздела с образованием углубления в центре капли [33, 34]. В [351 показано, что модели коалесценции, основанные на представлении однородной пленки, отделяющей каплю от поверхности, приводят к степенной зависимости времени коалесценции капли, пропорциональной пятой степени эквивалентного диаметра. Эти модели отрицают влияние разности давлений, возникающих вследствие искривления пленки, и поэтому дают завышенные значения показателя степени. [c.290]

    Исходя из сложной природы механизмов коалесценции представляется интересным связать два вида коалесценции как отношение их времен для оценки фазового разделения в зоне плотной упаковки капель дисперсной фазы в системе жидкость—жидкость. Обычно предполагается, что в дисперсном слое переменные, влияющие на коалесценцию капля—капля и капля—поверхность раздела, одни и те же для данного размера капель. На этой основе возможно дать теоретические выражения для времен контакта. Так, уравнение для времени стенания пленки в модели жесткая сфера—плоскость записывается [39] [c.292]

    Один из фильтров, применяемых в настоящее время в промышленности, состоит из сложных круговых элементов, число которых зависит от поверхности. Газ поступает в верхнюю часть фильтра, проходит через фильтровальные элементы и отводится через трубки. Механические примеси задерживаются в фильтровальных элементах, мелкие капли жидкости за счет коалесценции укрупняются и могут быть легко отделены от газа с помощью коагулятора, который устанавливается после фильтра. Концевой фланец этого фильтра съемный, что позволяет в случае необходимости легко заменять элементы. Преимущество данного фильтра — большая удельная поверхность его. Величина поверхности фильтра зависит от материала, его плотности и конструкции фильтра. [c.95]


    Опыты 16] показали, что уменьшение d p пропорционально и,-о.б также указывает на иной характер зависимости среднего диаметра капель от скорости потока. Трудность поиска обобщающих уравнений для расчета среднего диаметра капель обусловлена рядом факторов. Прежде всего это связано с существенной ролью в механизме диспергирования пристенных слоев жидкости и с наличием в реальных аппаратах застойных зон, где коалесценция превалирует над актами дробления. Немаловажную роль играют и адсорбционные явления на поверхности капель, изменяющие их межфазное натяжение. Поэтому при определении среднего размера капель или удельной поверхности контакта фаз системы жидкость—жидкость наиболее надежные результаты могут дать опыты, проведенные на модели аппарата, условия работы которой максимально приближены к реальным. [c.61]

    В жидкостных системах для межфазной поверхности предложены соотношения, в которые входит безразмерный критерий Вебера Уе. Он представляет собой отношение динамического давления жидкости, стремящегося разрушить каплю, к противостоящим ему силам поверхностного натяжения, способствующим их коалесценции. Следовательно, при жидкостной экстракции можно ожидать, что межфазная поверхность, определяющая массопередачу, увеличивается с увеличением критерия Вебера. [c.172]

    Как и всякий кинетический процесс, коалесценция определяется силой межмолекулярного взаимодействия и сопротивлением меж-фазных слоев. Эмульсии, как и пены, разрушаются вследствие того, что поверхностный слой вокруг капелек воды и пузырьков газа стремится приобрести меньшую свободную энергию за счет сокращения площади поверхности. Подобно свободной жидкости, прослойки между капельками эмульсии или пленки пены стремятся собраться в каплю, а, так как сопротивление незащищенных межфазных прослоек межмолекулярным силам небольшое, не обработанные ПАВ обращенные эмульсии могут существовать только при невысокой концентрации дисперсной фазы (разбавленные эмульсии) и малом содержании электролита. [c.77]

    Обычно эмульсии типа М/В стабилизируются гидрофильными эмульгаторами, а эмульсии В/М — олеофильными. Механизм стабилизации четко виден на примере стабилизации твердыми порошками крупинки гидрофильного порошка при перемешивании со смесью двух жидкостей попадают на границу их раздела и вследствие того, что они смачиваются водой, практически размещаются в воде. Если порошок гидро-фобен, то он смачивается маслом и втягивается в слой масла. Из схемы (рис. 114) видно, что гидрофильные порошки, концентрируясь на межфазной границе, защищают шарики масла от коалесценции (рис. 114, а). Такие порошки не защищают шарики воды от коалесценции (рис. 114, б). При столкновении шариков воды их поверхности непосредственно соприкасаются, и происходит коалесценция. Гидрофобные крупинки будут, наоборот, стабилизировать эмульсии типа В/М. [c.451]

    Величина ] представляет собой сумму межфазной поверхностной энергии определяемой состоянием монослоя на границе фаз, и свободной энергии /о вблизи поверхности, т. а. / = /а+ / . Объемно-поверхностный вклад обусловлен изменением состояния слоев жидкости вблизи поверхнос-ти раздела фаз. Несмотря на то что вообще > fv, устойчивость системы в большинстве случаев связана именно с изменением так как при образовании агрегатов из твердых частиц граница раздела фаз обычно не исчезает. Поэтому в ходе коагуляции величина а остается практически постоянной, а изменяется причем степень изменения зависит от уменьшения расстояния между частицами. Конечно, все это не относится к эмульсиям, где имеет место коалесценция, то есть слияние частиц с полной ликвидацией первоначально разделяющей частицы межфазной поверхности. [c.19]

    КОАЛЕСЦЕНЦИЯ — слияние (укрупнение) капель жидкости в газовой среде (туманы) или в другой жидкости (эмульсии), или пузырьков газа (пар) в жидкости под влиянием молекулярных сил, проявляющихся в поверхностной энергии. К.— самопроизвольный процесс, сопровождающийся при постоянной температуре понижением свободной поверхностной энергии на величину, пропорциональную уменьшению поверхности. Выпадение дождей связано с К- мельчайших капелек воды в более крупные, быстро падающие под влиянием силы тяжести. Практическое значение К. очень велико прежде всего для расслоения эмульсий, например, при обезвоживании нефти, что достигается разрушением стабилизирующей пленки эмульгатора на поверхности капель нефти. [c.129]

    Рассмотрим кинетику разрушения пены (рис. 68). Свежеприготовленная пена имеет прослойки жидкости (рис. 68, а), обладающие значительной толщиной-и находящиеся между пузырьками газа, покрытыми гидратированными молекулами поверхностно-активного вещества. Толщина гидратных слоев составляет часть от толщины прослоек между пузырьками. Вода, заключенная между пузырьками, начинает стекать вниз — толщина прослойки уменьшается до тех пор, пока гидратные слои двух поверхностей не придут в соприкосновение (рис. 68,6). Вторым этапом разрушения пены является утоньшение гидратных слоев и, наконец, достижение прослойкой такой толщины, при которой она становится неустойчивой, что приводит к коалесценции пузырьков (рис. 68, в). [c.167]

    Важным типом коллоидных систем являются эмульсии — высокодисперсные системы, в которых дисперсная фаза и дисперсионная среда являются жидкостями. Образование таких систем возможно при нерастворимости или очень ограниченной растворимости одной жидкости в другой. В зависимости от условий каждая из фаз может быть либо дисперсионной средой, либо дисперсной фазой. Например, из масла и воды могут быть получены эмульсии двух типов масло в воде и вода в масле . Агрегативная устойчивость эмульсий повышается введением специальных веществ — эмульгаторов, адсорбирующихся на поверхности капель и препятствующих пх слиянию — коалесценции. [c.425]

    Основной целью экспериментальных исследований по межка-пельной коалесценции было получение соотношения менаду временем коалесценции, диаметром капель и физическими свойства1т фаз. При моделировании коалесценции капля—капля размещением капель различных размеров на поверхности жидкости получено соотношение для времени коалесценции в зависимости от диаметра капли а и физических свойств, аналогичное соответствующим уравнениям для коалесценции капля—поверхность раздела фаз  [c.291]

    Смит [401 провел детальное исследование, пытаясь моделировать межкапельную коалесценцию, протыкая свободную каплю, лежащую на выпуклой поверхности жидкости. При этом было определено влияние соотношения диаметров капель на степень утончения пленки и на скорость расширения перемычки при различной кривизне нижней поверхности. Эксперименты проводили с водными каплями, удерживаемыми на кривой поверхности стеклянными кольцами, которые были покрыты несмачивающимся силиконом. Как было показано, полученные результаты не были свободны от влияния стеклянных колец. Несмотря на связанные с этим трудности, тем не менее обсуждались условия расширения перемычки и удаления пленки. [c.285]

    Единнчные капли. Качественное описание такого процесса подобно рассмотренному при обсуждении коалесценции единичных капель на плоской поверхности жидкости. Здесь та же ситуация, но одна из поверхностей представляет собой твердое тело. [c.300]

    Массоперенос в пузыре. Вследствие того, что коэффициенты диффузии в газе на 4 порядка выше, чем в жидкости, процесс массопереноса в пузыре протекает значительно быстрее, чем в каплях. Степень извлечения различных газов и паров из пузыря диаметром 4 мм, равная 99 %, может достетаться уже на высоте слоя жидкости от 2 до 10-12 см. Такая высокая скорость массопереноса в пузырях приводит к значительным трудностям при экспериментальном исследовании этого процесса. Трудности эти связаны с очень большим вкладом так называемых концевых эффектов в общее количество вещества, поступающего в пузырек в процессе его существования. Разделить стадии, из которых складывается общий процесс массопереноса в пузырьке (массоперенос во время образования, собственно движения и коалесценции на поверхности жидкости) практически невозможно. При этом степень поглощения в процессе образования пузыря и выхода его на поверхность жидкости может составлять до 50 % и выше. Кроме того, в связи с очень большой скоростью массопереноса в процессе движения становится заметным влияние так называемого поверхностного сопротивления. По-видимому, этим объясняется тот факт, что в настоящее время механизм массопередачи в пузырьке до конца не выяснен, а имеющиеся экспериментальные результаты по определению коэффициентов массоотдачи достаточно противоречивы. Многочисленные результаты по определению коэффициентов массоотдачи при лимитирующем сопротивлении газовой фазы на барботажных тарелках различных конструкций практически не дают никакой информации о механизме массопередачи в движущихся пузырях. Это связано с тем, что в такого рода экспериментах определяется суммарный коэффициент массоотдачи на тарелке, включающий все три стадии процесса. [c.285]

    Зависимости нефтеотдачи от различных факторов можно установить, если в механизме вытеснения будут выявлены процессы, в большой степени влияющие на нефтеотдачу пластов и одновременно связанные с упомянутыми факторами. Эта мысль впервые были высказана Г.А. Бабаляном. По результатам его исследований, нефтеотдача существенно зависит от некоторых элементов кинетики вытеснения -механизма разрушения аномального слоя нефти на поверхности породы, диспергирования и коалесценции нефти в поровом пространстве, процессов отрыва и прилипания нефти к твердой поверхности породы. С другой стороны, интенсивность и закономерности развития этих процессов тесно связаны со свойствами пористых сред и пластовых жидкостей. Для установления зависимости нефтеотдачи от многочисленных свойств пластовых систем необходимо лишь определить влияние каждого из них на процессы диспергирования, коалесценции капель жидкости и разрушения аномального слоя нефти на твердой поверхности породы. [c.192]

    В контактном теплообменном аппарате диспергирование одной из фаз производится при помощи распылителя той или иной конструкции (сопла, перфорированные тарелки и т.п.). На выходе из распылительного устройства происходит дробление струи на множество капель. При этом в барботажном слое создается развитая поверхность контакта фаз. На струю жидкости, вытекающую из отверстия или насадки, действуют силы инерции и гравитации, силы вязкости, поверхностного натяжения, а также турбулентные пульсации в струе и в самой среде. Капли, образующиеся при распаде струи, в процессе движения соударяются между собой п со стенками аппарата. Таким образом, конечная величина частиц диспергируемой фазы определяется суммарным эффектом трех процессов диспергирования, дробления и коалесценции. Определение этой величины расчетным путем пока еще невозможно из-за недостаточной изученности вопроса. Однако для ряда частных случаев решения уже получены и содержатся в работах Колдер-бенка, Фудзияма, Хейфорта и Тройбэла, Сиемса и др. [3]. [c.66]

    Первой стадией диспергирования является растягивание капли жидкости в цилиндрик, что сопровождается увеличеЕшем поверхности дисперсной фазы и происходит с затратой работы для преодоления молекулярных сил поверхностного натяжения. Вытянутая капля становится неустойчивой и распадается на мелкие частицы, приобретающие сферическую форму. Этот распад является второй стадией процесса, сопровождается уменьшением поверхности и свободной поверхностной энергии. Образующиеся при перемешивании цилиндрики жидкости начинают распадаться на капельки только тогда, когда их длина становится больше длины окружности сечения. В третьей стадии происходят одновременно процессы коалесценции при столкновении капель и диспергирования образовавшихся капель. Однако чем меньше становятся капельки, тем труднее происходит их вытягивание. Под действием увеличивающегося капиллярного давления более мелкие капли делаются все более жесткими, сопротивляющимися изменению формы. Установлено, что диспергирование происходит не только при растяжении капель, но и даже при небольшом сжатии. [c.15]

    При совместном действии электрического и ультразвукового внешних силовых полей наблюдается заметная интенсификация процессов седиментации и коалесценции при наложении электрического поля. Однако следует заметить, что скорость движения частиц фазы и время образования границы фаза—среда несколько меньше, а время полного разделения несколько больше, чем при наложении только электрического поля. Положительное действие ультразвука заключалось в исключении таких процессов, как гетероадагуляция полностью исключалось прилипание частиц фазы к электродам и к стенкам измерительных кювет, накопление пузырьков газа как на поверхности электродов, так и во всем объеме жидкости. Неблагоприятное воздействие ультразвука проявляется в уменьшении степени поляризации частиц дисперсной фазы и выравнивания концентрации частиц фазы по всему объему кюветы и у электродов. [c.69]

    При замерзании водной фазы эмульсии типа М/В появляются кристаллы льда, которые выталкивают шарики масла в сужающиеся каналы незамерзшей жидкости (Янг, 1934). При этом концентрация электролитов в еще незамерзшей воде увеличивается, вода все более переохлаждается, электрический заряд эмульсии уменьшается (Боросихинои др., 1961). В результате роста кристаллов льда шарики масла сжимаются, вытягиваются в нити и соединяются. Согласно Лебедеву и др. (1962), последующие процессы зависят от условия контакта поверхности шарика и адсорбционного слоя эмульгатора. Когда вязкость поверхности шарика достигает вязкости твердого вещества, гидрофобная часть адсорбированных молекул эмульгатора теряет свою подвижность. Это предотвращает деформированные шарики масла, находящиеся под давлением кристаллов льда, от восстановления. В той части поверхности шарика, которая не защищена эмульгатором, начинается коалесценция, зависящая от природы эмульгатора (Поспелова и др., 1962), его концентрации, степени покрытия эмульгатором поверхности шарика и от природы дисперсной фазы (Кист-лер, 1936). Длина гидрофобной [c.125]

    Полый распыливающий абсорбер (рис. Х1-28) представляет собой колонну, в верхней части корпуса / которой имеются форсунки 2 для распыливания жидкости (главным образом механические). В распылива-ющих абсорберах объемные коэффициенты массопередачи быстро снижаются по мере удаления от форсунок вследствие коалесценции капель и уменьшения поверхности фазового контакта. Поэтому оросители (форсунки) в этих аппаратах обычно устанавливают на нескольких уровнях. [c.457]

    Эмульсии, как и все коллоидные и микрогетерогенные системы, агрегативно неустойчивы из-за избытка свободной яне.пгии на межфазной поверхности. Агрегативная неустойчивость эмульсий проявляется в самопроизвольном образовании агрегатов капелек с последующим слиянием (коалесценцией) отдельных капелек друг с другом. В пределе это может приводить к полному разрушению эмульсии и разделению ее на два слоя, из которых один соответствует жидкости, образующей в эмульсии дисперсную фазу, а другой — жидкости, являющейся дисперсионной средой. [c.371]

    Три встряхивании полярной жидкости с неполярной в присутствии твердого эмульгатора его крупинки прилипают к межфазной поверхности, причем большая часть поверхности частиц эмульгатора находится в той жидкости, которая их лучше смачивает. Таким образом, на капельках образуется как бы броня , предотвращающая их коалесценцию. Понятно, что если твердый эмульгатор лучше смачивается водой (например, каолин), такая броня возникает со стороны водной фазы при этом образуется эмульсия типа м/в. Если же твердый эмульгатор лучше смачиваате Г неполярным углеводородом (например, сажа), то образуется эмульсия типа в/м. Сказанное иллюстрируется схемой, изображенной на рис. XII,4. В случаях / а и //б крупинки твердого эмульгатора находятся с наружной стороны капелек, и поэтому соответ- [c.376]


Смотреть страницы где упоминается термин Коалесценция на поверхности жидкости: [c.296]    [c.195]    [c.122]    [c.122]    [c.122]    [c.145]    [c.544]    [c.79]    [c.122]    [c.542]    [c.46]    [c.18]    [c.349]   
Последние достижения в области жидкостной экстракции (1974) -- [ c.258 ]




ПОИСК





Смотрите так же термины и статьи:

Коалесценция



© 2025 chem21.info Реклама на сайте