Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Природа наполнителей и их дисперсность

    В монографии рассмотрены современные представления о природе твердения вяжущих веществ, включая вопросы состава тампонажных растворов, стехиометрии продуктов гидратации портландцемента, физико-химических основ процессов формирования дисперсных структур вяжущих веществ. Особое место занимают исследования механизма процессов структурообразования в дисперсиях минеральных вяжущих — трехкальциевого силиката, трехкальциевого алюмината, трехкальциевого алюмината в присутствии гипса и наполнителя, тампонажных цементных дисперсий. [c.6]


    Феноло-формальдегидные олигомеры являются полупродуктами для производства феноло-формальдегидных пластических масс (фенопластов). В состав фенопластов, помимо олигомера (резола или новолака), входят наполнитель, отвердитель (для новолаков), катализатор отверждения (для резолов) пластификатор и красители. В зависимости от природы наполнителя и его дисперсности фенопласты делятся на прессовочные материалы и слоистые пластики. [c.403]

    Прочностные, упругие и другие механические свойства пространственной сетки, безусловно, зависят от природы наполнителя, дисперсности и формы его частиц. Например, минеральные наполнители повышают жесткость материала, рост дисперсности волокон приводит к увеличению упругой деформации. Каучукоподобные наполнители придают материалу эластичность, ударную прочность. Большое значение для обеспечения долгосрочной службы композиционных материалов имеет снятие внутренних напряжений, способствующих преждевременно- [c.449]

    ВЛИЯНИЕ ПРИРОДЫ И ДИСПЕРСНОСТИ НАПОЛНИТЕЛЯ НА СВОЙСТВА УГОЛЬНЫХ МАТЕРИАЛОВ [c.101]

    Вводится наполнитель в количестве от 2 до 85% (весовых). Существенное значение имеет не только концентрация его в материале, но также химическая природа и физическая структура наполнителя (дисперсность, ориентация и т. д,). [c.265]

    Объемные свойства наполнителей, как и их поверхностные свойства, определяются прежде всего природой и дисперсностью самого наполнителя, его модифицированием, технологией дробления, модифицирования и введения в ПИНС, а также рецептурой и коллоидным строением ингибированных составов. При рассмотрении объемных свойств, в первую очередь, обращают внимание на  [c.159]

    На горючесть наполненных полимерных материалов оказывает влияние не только химическая природа наполнителя, но и его дисперсность, а также прочность сцепления наполнителя и связующего. С увеличением адгезии возрастает прочность материала, что зачастую сопровождается увеличением огнестойкости и стабильности к термоокислению. Например, при введении аэросила в поливинилхлорид температура разложения увеличивается с 580 до 610 °С, а при введении кварцевого песка температура разложения уменьшается до 565 °С [125]. Однако даже в случае удачного подбора наполнителя процесс воспламенения и горения композиционных материалов определяется степенью однородности и изотропности материала, концентрацией негорючих частиц в поверхностных слоях материала. [c.105]

    Существенное значение имеет не только химическая природа, но и физическая структура наполнителя (дисперсность, ориентация и т. д.), а также концентрация его в материале. [c.264]


    Введение наполнителя снижает стоимость изделия и повышает его механические свойства. Выбор наполнителя имеет весьма большое значение для механических и электрических свойств пресс-изделия, а также для его химической, водо- и теплостойкости. Эти свойства в значительной степени определяются химической природой наполнителя, его физическим строением и дисперсностью. Наполнители разделяются на органические и неорганические, а по физической структуре — на волокнистые и порошковые. [c.179]

    Природа наполнителей и их дисперсность [c.56]

    Из модифицированных наполненных отходов капрона получают литьевые антифрикционные материалы. В МИТХТ им. М. В. Ломоносова получен антифрикционный литьевой высоконаполненный материал АТМ-2 с комплексом свойств, превосходящих первичный капрон. Этот материал отличается повышенной стойкостью к действию тепла, света, влаги и может обеспечить надежную работу деталей в машиностроении [39, 40]. Из отходов капроновой щетины и путанки получены композиции с различными наполнителями. Исследовано влияние со-ства, дисперсности, гранулометрического состава и природы наполнителя на физико-механические и антифрикционные свойства. Наибольшее распространение получили литьевые композиции с минеральными наполнителями. В качестве наполнителя для полиамидов применяется графит, тальк, стеклянное волокно и др. [c.54]

    Для улучшения свойств вторичного полиэтилена в композицию на его основе вводят минеральные и органические наполнители, ПАВ и другие добавки. В качестве наполнителя могут быть использованы дисперсные отходы любой природы, например древесная мука, резиновая крошка или измельченные реактопласты. Так, Тушинский машиностроительный завод производит из отходов полиэтилена и резиновой крошки массивные блоки для переездов трамвайных путей. Основная масса изделия изготовляется прессованием смеси крупной крошки и [c.280]

    В результате наполнения получаются материалы, основные физические и механические свойства которых существенно отличаются от свойств матрицы. Прежде всего, наполнитель вводится с целью упрочнения матрицы, механизм которого зависит от типа наполнителя (дисперсный, волокнистый, тканый), их собственных свойств и химической природы поверхности. Под воздействием наполнителя происходят также изменения термических, электрических, теплофизических, фракционных и других свойств материала. [c.11]

    Существенное влияние на изменение устойчивости к истиранию имеет, по-видимому, введение в волокно различных наполнителей Однако влияние природы, степени дисперсности и качества наполнителя, введенного в волокно, на изменение этого показателя пока не выяснено. [c.122]

    Как известно, наполнители вводят в полимер для удешевления материала, для придания ему необходимых новых свойств, в том числе окраски (пигменты), но чаще всего — в целях усиления. В последнем случае наполнитель считают не инертным, а активным. Как указывает Липатов [255], для понимания механизма усиления необходимо учитывать все факторы, влияющие на свойства материала химическую природу полимера и наполнителя, тип наполнителя (дисперсный, волокнистый, тканый и др.), фазовое состояние полимера, адгезию полимера к поверхности, условия формирования наполненного полимера из раствора или расплава или условия отверждения жидкого связующего и пр. [c.182]

    Таким образом, борьба с коррозионно-механическим износом машин и механизмов является комплексной задачей, в решении которой участвуют все функциональные свойства смазочного материала противоокислительные, моющие, смазывающие, противоизносные, противозадирные, противокоррозионные и защитные. Для создания смазочного материала, максимально уменьшающего кор-розионно-механический износ, помимо правильного выбора среды (масляной основы) и — в случае необходимости — загустителя важнейшее значение имеет выбор наполнителей, особенно присадок — композиций маслорастворимых ПАВ. Наполнители — твердые частицы размером от 100 А до 10- м (чаще 10- —10- м) — вводят в эмульсолы, эмульсии, масла, пластичные смазки различных типов, смываемые и несмываемые пленочные покрытия [16— 22, 57, 118, 119]. Наполнители образуют в объеме смазочного материала новую фазовую границу раздела, активность и поляризующее действие которой зависят от природы наполнителя, степени его дисперсности, чистоты поверхности, ее предварительного модифицирования при помощи ПАВ, способа их введения и т. д. [c.117]

    С точки зрения физико-химических свойств, рецептура препаратов атразина и симазина изучена более или менее подробно. Однако, совершенно 1не выяснен вопрос, в какой степени состав препарата, степень его дисперсности, изменение природы и количества ПАВ, а также природа наполнителя могут влиять на его гербицидную активность. [c.201]


    На усиление каучука влияют следующие свойства наполнителя степень дисперсности, форма его частиц и природа частиц. На примере саж было установлено, что с повыщением дисперсности в значительной степени увеличивается активность наполнителя. Чем больще удельная поверхность наполнителя, тем больще и поверхность соприкосновения его с каучуком. [c.169]

    Представления о структуре битума как сложной дисперсной системе с дисперсной фазой из асфальтенов и дисперсионной средой из смол и углеводородов получили широкое распространение [119, 173, 196, 223, 225]. При этом роль асфальтенов часто сводят к роли активного наполнителя [119]. В ряде работ подчеркивается особое влияние на структуру битума количественного содержания, а не природы асфальтенов и влияние природы дисперсионной среды [174, [c.48]

    Св-ва М. определяются природой полимера и наполнителя, степенью наполнения и характером распределения наполнителя. Железо и его сплавы вводят в полимеры с целью увеличения магн. восприимчивости, А1, Ая, Си, Аи-для придания тепло- и электропроводности. Наполнение чешуйками А1 снижает газо- и влагопроницаемость полимеров, присутствие РЬ, У, РЗЭ, Bi, С<1 придает М. способность экранировать ионизирующие излучения. М., содержащие РЬ, 2п, 2г, Мо и их хим. соединения или сплавы, обладают низким коэф. трения. Дисперсные частицы наполнителя уменьшают, а волокна увеличивают прочность при изгибе и уд. ударную вязкость М. [c.48]

    Наряду с геометрической структурой, химическая природа поверхности адсорбентов, высокодисперсных наполнителей, загустителей смазок в значительной степени определяет их свойства. Химическим модифицированием поверхности можно в значительной степени изменять адсорбционные и технологические свойства важнейших дисперсных систем. [c.165]

    Усиление зависит от ряда характеристик дисперсной фазы и системы каучук—наполнитель размера и пол и дисперсности частиц наполнителя, их формы и удельной поверхности, распределения частиц наполнителя в каучуке, природы и силы взаимодействия между каучуком и наполнителем. Сравнение механических свойств наполненных эластомеров обычно принято проводить при одинаковом объемном содержании наполнителя. Уменьшение размера частиц всегда приводит к увеличению удельной поверхности наполнителя, но она может быть в разной степени развитой и при одинаковом размере его частиц, что определяет количество адсорбционных, контактов между каучуковой фазой и наполнителем. [c.131]

    Наполнение полимеров в соответствии с определением [32] есть сочетание полимеров с твердыми или жидкими веществами, которые относительно равномерно распределяются в объеме образующейся композиции и имеют четко выраженную границу раздела с непрерывной полимерной фазой. Введение в полимерную фазу твердых дисперсных или волокнистых веществ неорганической или органической природы осуществляется с целью изменения физикохимических, механических, термических, электрических, фрикционных и прочих свойств материалов, хотя, как правило, основной задачей является улучшение физико-механических свойств. Это обычно и называют усиливающим действием наполнителя. В связи с этим существует условное разделение наполнителей на активные, т. е. усиливающие, и неактивные, т. е. такие, введение которых не улучшает свойств материала, а приводит только к изменению цвета, понижению стоимости и пр. [c.149]

    Приведенные в этом разделе данные показывают, что введение наполнителя существенно изменяет термомеханические характеристики полимера. Они определяются концентрацией и степенью дисперсности наполнителя, формой частиц и природой их поверхности. Изучение термомеханических свойств позволяет ясно представить те процессы, которые происходят при взаимодействии полимера и наполнителя, и их влияние на механические свойства наполненных полимеров. [c.159]

    Прочностные свойства резко возрастают за счет образования пространственной сетки из частнц дисперсной фазы. Чем анизо-метричнее форма частнц, тем при меньшей их концентрации образуется пространственная структура. Особенно эффективны в этом отношении волокнистые наполнители, широко используемые в качестве армирующего компонента. Основную часть механических нагрузок на такой материал принимает на себя пространственная сетка из наполнителя, матрица передает эти нагрузки от частицы к частице, и если она мягче наполнителя, то служит кроме того, в качестве амортизатора. Прочностные, упругие и другие механические свойства пространственной сетки, безусловно, зависят от природы наполнителя, дисперсности и формы его частиц. Например, минеральные наполнители увеличивают жесткость материала, рост дисперсности волокон приводит к увеличению упругой деформации. Каучукоподобные наполнители придают материалу эластичность, ударную прочность. Большое значение для долгосрочной службы композиционных материалов имеет снятие внутренних напряжений, способствующих преждевременному разрушению материала. Если в бетонах внутренние наиряжения понижают с помощью вибрации прн твердении или добавлением ПАВ, то у металлов это достигается введением специальных модификаторов (обычно поверхностно-активных), в том числе гетерофазных включений. [c.393]

    В зависимости от типа полимерной матрицы различают наполненные реактопласты, термопласты и каучуки (о последних см. в ст. Наполненные каучуки). В зависимости от типа наполнителя Н.п. делят на дисперсно-наполненные пластики (наполнитель-дисперсные частицы разнообразной формы, в т.ч. измельченное волокно), армированные пластики (содержат упрочняющий наполнитель непрерывной волокнистой структуры), газонаполненные пластмассы, маслонаполненные ка)гчуки по природе наполнителя Н.п. подразделяют на асбопластики (наполнитель-асбест), графитопласты (графит), древесные слоистые пластики (древесный пшон), стеклопластики (стекловолокно), углепластики (углеродное волокно), органопластики (хим. волокна), боропластики (борное волокно) и др., а также на гибридные, или поливолокнистые, пластики (наполнитель-комбинация разл. волокон). [c.168]

    В качестве наполнителей применяют дисперсные материалы с зернистыми (сажа, TiOj, SiO , каолин) или пластинчатыми (тальк, слюда, графит) частицами, а также волокнистые, листовые (стеклоткань, стекломаты) и вспененные (полые стеклянные микросферы, перлит, керамзит) материалы. Такие минер, наполнители снижают содержание горючих компонентов в в-ве, влияют на процессы пиролиза, изменяют условия тепло- а массообмена между твердой и газовой фазами при горении. Эффективность наполнителей определяется их хим. природой и дисперсностью. [c.327]

    Выяснение механизма усиливающего действия наполнителей имеет большое значение для направленного улучшения физикомеханических свойств наполненных материалов. Механизм усиливающего действия наполнителей в пластмассах и резинах различен, поскольку последние в условиях эксплуатации находятся в вы-сокоэластическом состоянии. Следует также иметь в виду, что механизм усиления полимеров нельзя объяснить с какой-либо одной точки зрения. Для его понимания необходимо учитывать все факторы, влияющие на свойства материала химическую природу полимера и наполнителя, тип наполнителя (дисперсный, волокнистый, тканый и пр.), фазовое состояние полимера, адгезию полимера к поверхности, условия формирования наполненного полимера из раствора или распл ава или условия отверждения жидкого связующего, условия вулканизации и т. д. [c.251]

    Влияние химической природы наполнителя и методов формирования образцов наполненного ПЭ на процессы термоокислительной деструкции достаточно убедительно показано во многих работах [119, 120, 125, 169, 185, 193-198]. Так, авторами [119, 120, 193-195] установлено, что введение в ПЭ дисперсного железа, талька и кварцевого песка в количестве от 5 до 15% (об.) способами совместного диспергирования или горячего вальцевания приводит к сдвигу температуры начала окислительной деструкции в низкотемпературную область. С повышением концентрации наполнителей до 20% (об.) эта тенденция усиливается. Наиболее отчетливое снижение температуры начала окислительной деструкции зафиксировано на образцах, содержащих дисперсное железо, в случае же талька, кварцевого песка и стеклянного порошка этот эффект выражен в меньшей степени. Снижение термоокислительной стабильности наполненного ПЭ объясняется ростом площади контакта и увеличением содержания кислорода в системе, причем железо проявляет наиболее высокую каталитическую активность в термоокислительной деструкции HOjmMepa. При введении в ПЭ различных количеств [0,5 2 10, 20 30%1 (об.)] дисперсных кварцевого песка, талька и стеклянных микросфер обнаружено [196], что стеклосферы не влияют на температуру начала термоокислительной деструкции полимера, кварцевый песок снижает, а тальк - повышает ее. Различие в действии этих нанолнителей связывают с химической активностью поверхности, т.е. с особенностями их каталитического влияния на термоокислительную деструкцию ПЭ. [c.133]

    Важное значение имеют наполнители (например, кварц, белая сажа, окислы металлов, каолин, углеродная сажа, асбест, стеклянное волокно, хлориды металлов и Др.). От их природы, количества, дисперсности и чистоты, от правильного выбора и использования зависят технологические и эксплуатационные (механические, электрические, геплофизические и др.) характеристики, стоимость и внешний вид материалов. [c.70]

    ПЛАСТИЧЕСКИЕ МАССЫ (пластмассы, пластики), полимерные материалы, формуемые в изделия в пластическом илн вязкотекучем состоянии обычно при повыш. т-ре и под давлением. В обычных условиях находятся в твердом стеклообразном или кристаллич. состоянии. Помимо полимера могут содержать твердые или газообразные наполнители и разл. модифицирующие добавки, улучшающие технол. и(или) эксплуатац. св-ва, снижающие стоимость и изменяющие внеш. вид изделий. В зависимости от природы твердого наполнителя различают асбопластики, боропластики, графитопласты. металлополимеры, органопластики, стеклопластики, углепластики. П. м., содержащие твердые наполнители в виде дисперсных частиц разл. формы (напр., сферической, игольчатой, волокнистой, пластинчатой, чешуйчатой) и размеров, распределенных в полимерной матрице (связующем), наз. дисперсно-наполненными. П.м., содержащие наполнители волокнистого типа в виде ткани, бумаги, жгута, ленты, нити и др., образующие прочную непрерывную фазу в полимерной матрице, наз. армированными (см. Армированные пластики. Композиционные материалы). В П. м. могут также сочетаться твердые дисперсные и(или) непрерывные наполнители одинаковой или разл. природы (т.наз. гибридные, или комбинированные, наполнители). Содержание твердого наполнителя в дисперс-ио-наполненных П. м. обычно изменяется в пределах 30-70% по объему, в армированных - от 50 до 80%. [c.564]

    Влияние наполнителей на свойства смазок зависит от их природы, концентрации, дисперсности и способа введения, а также от свойств дисперсионной среды. Так, при увеличении концентрации слюды, графита и дисульфида молибдена в смазках выше 5 вес. % (при постоянном соотношении мыло — масло) структура разу-прочняется. Добавление наполнителя в готовые смазки (даже в концентрациях 25—30%) весьма незначительно влияет на их свойства. Поэтому, если в смазку необходимо ввести наполнитель с минимальным изменением ее реологических свойств, целесообразно делать это при гомогенизации. Если же наполнитель должен принять участие в формировании структуры смазки, его следует вводить при температуре, превышающей температуру плавления загустителя, т. е. в процессе приготовления смазки. Свойства сма" Ок можно варьировать не только соответствующим подбором наполнителей, но и изменением соотношения между наполнителем и загустителем. [c.37]

    Маприца - компонент, обладающий непрерывностью по всему объему. Армап ра -прерывный компонент, разделенный в объеме композиции (усиливающий, армирующий компонент, наполнитель). В качестве матрицы могут бьггь использованы органические и неорганические полимеры, керамика и другие вещества, усиливающим наполнителем - дисперсные частицы или волокна материалов различной природы [17]. [c.756]

    Прочность спекающегося углеродного материала определяется такими факторами, как химическая природа связующего, его соотношение с наполнителем, параметрами карбонизации (обжига), природой поверхности и дисперсностью наполнителя. Поскольку результатом химических превращений связующего при обжиге пекококсовых композиций является образование кокса из связующего, то этот показатель часто рассматривают как основную характеристику спекающей способности пека. Так, B. . Веселовский считает, что прочность обожженного углеродного материала прямо пропорциональна выходу кокса из связующего. Однако из рассмотрения данных, приведенных ниже, видно, что этому правилу подчиняются не все связующие. При одинаковых значениях fp и выхода коксового остатка пеки разнрй природы на одном наполнителе с одинаковым гранулометрическим составом существенно отличаются прочностью  [c.152]

    Для исследования влияния природы и дисЦерсности тонко= го помола наполнителя на свойства обожженных изделий были изготовлены образцы на основе термоантрацита с составом шихты -1,25 + 1,0 — 207о,-0,5 + 0,315 — 50%, тонкий помол — 30%. В качестве тонкого помола использовали литейный кокс, термоантрацит, нефтяной красноводский кокс и графитированные возвраты трех степеней дисперсности. В качестве связующего брали среднетемпературный пек. [c.101]

    Можно предположить, что избыточное поглощение газа наполненными полимерами обусловлено как адсорбционными процессами на поверхности частиц наполнителя, так и механическим захватом пузырьков газа в виде аэрофлокул прилипающих к поверхности частиц, аналогично тому, как это имеет место при флотации Отдельные участки на поверхности частиц наполнителя, например сажи, неравноценны по своей физической и химической природе, что обусловливает различную сорбционную способность этих участков Опыты по сорбции бутена на саже позволили установить, что наибольшее выделение тепла происходит при заполнении лишь 40% поверхности сажевых частиц монослоем молекул бутена Возможность адсорбции газа на участках поверхности частиц наполнителя, не смоченных полимером, подтверждается в некоторых случаях высокой теплотой сорбции газа, зависящей от степени дисперсности наполнителя а также наличием адсорбционно-связанного газа на поверхности минеральных частиц до введения их в полимер В других случаях, например при введении инертных наполнителей — мела или барита, вероятность адсорбции невелика и большие значения коэффициентов сорбции, по-видимому, обусловлены присутствием механически захваченного при изготовлении смеси газа, пузырьки которого сохраняются в резине за счет фиксации ее структуры при вулканизации. Известно, что удаление газов из резиновых смесей в процессе вулканизации или путем предварительного вакуумирования минеральных наполнителей улучшает взаимодействие наполнителя с каучуком и повышает показатели механических свойств резин [c.195]

    Металлополимеры - металлонаполненные поли.меры или пористые металлы, пропитанные поли.мерны.ми ко.мпозиция.ми. HaпoлнитeJ я-.ми служат порощки, волокна и ленты, пoJ yчaeмь e практически из любых металлов или сплавов (чаще всего Ре, Си, №, Ag,Sп, А1, Со, РЬ, 2п, Zт, Сг, Т1, Та). Свойства. металлополимера опреде тяются природой полимера и наполнителя, степенью наполнения и характером распределения наполнителя. С целью увеличения магнитной восприимчивости в полимеры вводят Ре и его сплавы, для придания тепло- и электропроводности - А1, А , Си, Аи. Наполнение чешуйчатым А1 снижает газо- и влагопроницае. юсть полимеров. Присутствие РЬ, РЗЭ, В1, Сс1 придает металлополимерам способность экранировать ионизирующие излучения. Металлополимеры, содержащие РЬ, 2п, 2г, Мо и их хи.мические соединения или сплавы, обладают низким коэффициенто.м трения. Дисперсные частицы наполнителя уменьшают, а волокна увеличивают прочность при изгибе и удельную ударную вязкость металлополимера. [c.54]

    Влияние цаполнителей ца химическую стойкость пластмасс весьма велико. Оно может быть как положительным, так и отрицательным. Химическая активность или инертность наполнителя зависит от его природы, дисперсности, гидрофильности, смачиваемости, адгезии к нему полимерной основы. [c.54]

    С изложенной точки зрения представляют интерес исследования структурообразования при одновременном присутствии нескольких наполнителей, модифицированных введением ПАВ [508], В этом случае каждый компонент твердой фазы обладает различной способностью к взаимодействию с полимером и с адсорбционным модификатором и, следовательно, к образованию в системе коагуляционных структур. В образовании коагуляционной сетки участвуют, таким образом, частицы наполнителей различных природы, формы и дисперсности. Так, для смеси немодифицированных барита и каолина прочность структур, образующихся в суспензии, в зависимости от соотношения компонентов проходит через максимум [508]. Это определяется различиями в упаковке частиц разной формы в смешанной коагуляционной сетке. Но в отличие от суспензий в отсутствие растворителя в полимере прочность структур определяется не плотностью упаковки частиц, а структурой сопряженной системы частица — полимер. Повышение прочности структуры при определенном соотношении разнородных наполнителей объясняется также различной степенью модификации их поверхности ПАВ, необходимой для достижения неполного насыщения поверхности каждого компонента смешанной фазы хемосорбционным слоем модификатора. Представления о зависимости прочности наполненных полимерных систем от степени покрытия частиц наполг нителя ПАВ были подтверждены электронно-микроскопическими наблюдениями [516]. [c.262]

    Таким образом, поверхность наполнителя является тем местом, где преимущественно возникает и растет полймерная фаза. Именно в этом и заключается организующая, структурообразующая роль частиц в наполненных растворах полимеров. Природа поверхности наполнителя имеет при этом важное значение. Гидрофобиза-ция поверхности, с одной стороны, благодаря снижению ее активности в отношении зародышеобразующего действия препятствует кристаллизационному структурообразованию, т. е. ослабляет кристаллизационную структуру, и, с другой стороны, (благодаря уменьшению контактного взаимодействия между гидрофобной поверхностью и полимером ослабляет коагуляционную структуру системы [528]. При выделении из пересыщенного раствора аморфного полимера [529] прочность структуры также может зависеть рт образования дисперсной полимерной фазы, скрепляющей частицы наполнителя, как это было показано на примере полистирола и поли-эфируретана. Однако в этом случае эффекты упрочнения сильно зависят от смачивания полимерной фазой частиц наполнителя. [c.264]


Смотреть страницы где упоминается термин Природа наполнителей и их дисперсность: [c.304]    [c.212]    [c.83]    [c.284]    [c.404]    [c.18]    [c.13]   
Смотреть главы в:

Порошковые полимерные материалы и покрытия на их основе -> Природа наполнителей и их дисперсность

Порошковые полимерные материалы и покрытия на их основе -> Природа наполнителей и их дисперсность




ПОИСК





Смотрите так же термины и статьи:

Дисперсность наполнителей

Наполнители

Наполнители дисперсные



© 2025 chem21.info Реклама на сайте