Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки методами

    В последние три года (1981 — 83 гг.) опубликовано довольно много работ по гель-фильтрации белков методом ЖХВД, и число примеров можно было бы умножить. Однако это вряд ли целесообразно, так как в большинстве случаев авторы ставят иеред собой одну и ту же (на наш взгляд, не самую важную для биохимика) задачу — про-вест1Г процесс гель-фильтрации белков или НК с максимальной скоростью, не очень заботясь о повышении его эффективности. С иных позиций выступила в начале 1982 г. фирма LKB , специалисты которой имеют давний и общепризнанный опыт в области методов фракционирования биологических макромолекул. [c.159]


    При фракционировании белков методом ионообменной хроматографии большое внимание уделяют выбору ионообменника (природе матрицы и емкости ионита) и буферного раствора, при котором осуществляется сорбция белков (величине pH и ионной силы, природе буфера и буферной емкости). [c.108]

    Ионообменная хроматография для фракционирования смеси белков используется значительно реже, чем для их очистки. Большие молекулярные массы обусловливают замедленную диффузию белков в жидких фазах и в связи с этим — невысокую разрешающую способность метода. Для смеси небольшого числа относительно некрупных белков ионообменное фракционирование еще себя оправдывает, однако в более сложных ситуациях оно явно уступает электрофорезу и изоэлектрофокусированию. Приведем несколько примеров фракционирования белков методом ионообменной хроматографии в более или менее благоприятных ситуациях. [c.309]

    Применение люминесценции для аналитических целей включает широкую область использования ее для идентификации веществ, для обнаружения малых концентраций веществ для контроля изменений, претерпеваемых веществом для определения степени чистоты веществ. Широко применяются измерения люминесценции при изучении кинетики обычных химических реакций. Высокая чувствительность метода позволяет фиксировать малую степень превращения, а иногда по люминесценции промежуточных соединений становится возможным установить механизм химической реакции. Люминесцентные методы используются в биологии, в частности, для исследования структуры белков методом флуоресцентных зондов и меток. [c.49]

    Определение молекулярной массы белков методом ультрацентрифугирования требует много времени и сложной и дорогостоящей аппаратуры. Поэтому в последние годы разработаны два более простых метода (гель-хроматография и электрофорез). При использовании гель-хроматографии в первую очередь требуется откалибровать колонку. Для этого через колонку с сефадексом пропускают несколько белков с известными молекулярными массами и строят график, откладывая значения логарифмов молекулярной массы против их элюционных объемов, которые находят, как показано на рис. 1.9. [c.45]

    Работа 66. Очистка белков методом гель-хроматографии [c.235]

    Реактивы для определения концентрации белка методом Лоури (с. 81). [c.220]


    Реакция применяется для определения аминного азота в аминокислотах, пептидах и белках (метод ван-Сляйка). [c.464]

    Фракционирование белков методом гель-фильтрации используется довольно редко, очевидно, ввиду низкой (по сравнению с другими хроматографическими методами) эффективности, присущей самому процессу (см. выше). Однако в тех случаях, когда число компонентов белковой смеси заведомо невелико, такое фракционирование может оказаться вполне эффективным приемом. Так, четыре главных белка вируса рака молочной железы мышей были успешно разделены по молекулярной массе методом гель-фильтрации их ком- [c.139]

    Аминокислотный состав и последовательность аминокислот выяснены для многих тысяч белков. В связи с этим стало возможным вычисление их молекулярной массы химическим путем с высокой точностью. Однако для огромного количества встречающихся в природе белков химическое строение не выяснено, поэтому основными методами определения молекулярной массы все еще остаются физико-химические методы (гравиметрические, осмометрические, вискозиметрические, электрофоретические, оптические и др.). На практике наиболее часто используются методы седиментационного анализа, гель-хроматография и гель-электрофорез. Определение молекулярной массы белков методами седиментационного анализа проводят в ультрацентрифугах , в которых удается создать центробежные ускорения [c.44]

    Объединяют первые 5—6 фракций с самым высоким содержанием белка. Концентрируют до 15—20 мг/мл. Определяют содержание белка. Методом электрофореза определяют состав полученного препарата IgG. Диализуют против боратного буфера pH 8,4 в течение ночи при 4°С и хранят при —20°С. Здоровый кролик дает 100—200 мг IgG. Таким же образом можно получить поликлональные антитела к другим белковым антигенам. [c.309]

    В отличие от статистического клубка, белковая глобула является не рыхлым флуктуирующим образованием, но компактной, плотно упакованной регулярной системой — апериодическим кристаллом. Плотная глобулярная структура белковой молекулы непосредственно доказывается малой вязкостью белков в растворе. Характеристическая вязкость [т ] (см. стр. 148) составляет для белков величину порядка сотых дециметра на 1 г (см., например, [78]). Определенный отсюда удельный объем много меньще, чем у обычных полимеров, образующих в растворе рыхлые клубки, и близок к удельному объему сухого белка. Это подтверждается всей совокупностью результатов исследования белков методами седиментации, диффузии, светорассеяния, рентгенографии, рассеяния рентгеновских лучей под малыми углами, электронной микроскопии и т. д. [c.221]

    Хорошим субстратом для выращивания кормовых дрожжей является молочная сыворотка — производственный отход при переработке молока. В 1 т молочной сыворотки содержится около 10 кг белка и 50 кг лактозы. Разработана эффективная технология выделения из молочной сыворотки белков методом ультрафильтрации низкомолекулярных веществ через мембраны. Эти белки используют для приготовления сухого обезжиренного молока. Жидкие отходы, остающиеся после отделения белков (пермеат), могут быть переработаны путем культивирования дрожжей в обогащенные белками кормовые продукты. [c.11]

    РАЗДЕЛЕНИЕ БЕЛКОВ МЕТОДОМ ХРОМАТОГРАФИИ [c.101]

    КОЛИЧЕСТВЕННОЕ ОПРЕДЕЛЕНИЕ БЕЛКОВ МЕТОДОМ ЭЛЮИРОВАНИЯ [c.60]

    Разборка рибосомных частиц происходит при их инкубации в условиях повышенной ионной силы и высокой концентрации Вначале процесс сводится лишь к диссоциации рибосомных белков в порядке, обратном наблюдаемому при сборке. Исследования пространственной структуры малой частицы рибосомной РНК с различным содержанием белков методами электронной микроскопии и малоуглового рентгеновского и нейтронного рассеяния убеждают в том, что всего шесть белков из 21, а именно те, которые первыми присоединяются к 16S РНК при сборке, удерживают плотность упаковки и форму полинуклеотидной цепи, свойственные функ- [c.54]

    Предполагалось, что дикетопиперазины вкраплены в пептидную цепь и разделяют ее на небольшие отрезки. Переломным и решаюш им явился 1941 г., когда Гордон, Мартин и Синдж предложили применять для разделения продуктов гидролиза белков метод хроматографии на бумаге. Появившиеся вслед затем методы электрофореза, противоточного распределения и метод ионообменных смол позволили исследователям получить необходимый для обоснования теории строения белка экспериментальный материал. [c.521]

    Таким образом, исследование ДОВ, АДОВ и КД эффективно при определении а-спиральности белков и полипептидов. С другой стороны, весьма перспективно изучение ИОА комплексов белков с красителями и ионами металлов, ИОА коферментов и простетических групп. Такие исследования дают сведения о конформациях и в сочетании с химией позволяют расшифровать события, протекающие в активном центре ферментов (см. гл. 6 и [135]). Изучению структуры белков методом КД посвящен обзор [272]. [c.319]


    Эти методы хроматографии, появившиеся около двух десятилетий назад, очень широко применяются во всех лабораториях, изучающих белки. Методы отличаются хорошей воспроизводимостью, простотой, высокой разрешающей способностью в разделении веществ, а также большой производительностью, возможностью фракционировать молекулы независимо от факторов окружающей среды. При хроматографии используют носители, которые многие изготовители научились делать весьма устойчивыми и инертными по отношению к биологическим полимерам, число которых велико. Инструкции и проспекты, прилагаемые изготовителями, очень обстоятельно информируют о характеристиках и возможностях носителей. Ссылки на исследовательские работы, в которых применены эти методы, насчитывают десятки тысяч. Они предоставляются также поставщиками этой продукции. [c.85]

    Регенерация природных растворимых белков методом осаждения. Растительные белки, растворимые в нативном состоянии и перерабатываемые в промышленном производстве, встречаются преимущественно в листьях (зелени) и клубнях. В соответствии с поставленной целью экстрагирование белков бывает более или менее полным и зависит от совместно выделяемых продуктов, которые с ними связаны, У листьев, традиционно используемых в качестве фуража для кормления животных, экстрагирование клеточной жидкости улучшает их обезвоживание. Нет необходимости полностью извлекать белки из остатка, сос- [c.474]

    Итак, благодаря избирательности бифуркационных флуктуаций и их строгой согласованности структурная самоорганизация белковой молекулы приобретает детерминистические черты (случайность порождает необходимость). Из конформационно жестких и взаимодействующих с ними лабильных фрагментов возникают нуклеации, которые через ряд чисто случайных, но тем не менее неизбежных и строго последовательных событий входят в домены или в нативную трехмерную структуру белка. Весь процесс самосборки пространственной структуры не требует времени больше, чем затрачивается на рибосомный синтез белковой цепи. Уникальность бифуркаций, порядок их возникновения и устойчивый конструктивный характер обусловлены конкретной, отобранной в ходе эволюции аминокислотной последовательностью. В то же время рассматриваемая модель свертывания не исключает образование "неправильных" промежуточных состояний, содержащих структурные элементы, отсутствующие в конечной конформации. Более того, поскольку в основу модели положен беспорядочно-поисковый механизм, осуществляющий сборку белка методом "проб и ошибок", то возникновение непродуктивных состояний белковой цепи становится неизбежным. Однако они нестабильны, так как продуктивные состояния, появляющиеся в результате бифуркационных флуктуаций, всегда более предпочтительны по энергии. К обсуждению этого вопроса вернемся в главе 17 при количественном описании механизма ренатурации панкреатического трипсинового ингибитора. [c.98]

    Физическая теория пространственной организации белка, определяемая сформулированными выше принципами, является дальнейшим развитием рассмотренной ранее термодинамической теории. В нее привнесены отсутствующие у последней конкретные, детерминистические признаки структуры белка, связывающие конформационное поведение макроскопической системы со свойствами ее микроскопических составляющих. Термодинамическая теория является феноменологической. Она была призвана установить природу самоорганизации белка (и, действительно, установила, что сборка полипептидной цепи представляет собой статистико-детерминистический процесс), отнести рассматриваемое явление к адекватной его природе области естественнонаучных знаний (нелинейной неравновесной термодинамике) и дать качественно непротиворечивую трактовку всем важнейшим особенностям этого явления (спонтанному характеру, беспорядочно-поисковому механизму, высокой скорости и безошибочности). Физическая теория, в отличие от термодинамической, является не качественной, а количественной теорией, и должна послужить основой метода численного решения конформационной проблемы белка. Метод, опираясь на физическую модель, строится на поэтапном подходе и анализе конкретной белковой молекулы, нативная конформация которой предполагается самой предпочтительной по энергии, наиболее компактной и согласованной в отношении всех внутри- и межостаточных взаимодействий структурой. [c.106]

    Белки, как и аминокислоты, амфотерны благодаря наличию свободных КН,- и СООН-групп. Для них характерны все свойства кислот и оснований. В зависимости от реакции среды и соотношения кислых и основных аминокислот белки в растворе несут или отрицательный, или положительный заряд, перемещаясь к аноду или катоду. Это свойство используется при очистке белков методом электрофореза. [c.44]

    И. А. Болотина, Изучение структуры белков методом кругового дихроизма, в сб. Молекулярная биология , т. 1 (Итоги науки и техники, ВИНИТИ АН СССР), 1972. [c.353]

    Определение белка. Для определения концентрации белка методом Лоури необходимо предварительно осадить его трихлоруксусной кислотой (с. 81). Спектрофотометрическое измерение можно проводить при условии, когда из раствора фосфорилазы удален АМФ, при этом отнощение Л260М280 равно 0,52—0,55 для расчета используют коэффициент А ° 1см= 13,2 при 280 нм. [c.221]

    Белев и соавторы для определения молекулярных масс денатурированных белков методом гель-фильтрацип использовали сефакрил S-200 Superfine . Колонку размером 1,6 х ЮО см калибровали четырьмя полипептидами с известным числом аминокислотных остатков N) — от 71 (токсин) до 579 (БСА). Элюцию вели 6 М водным раствором гуанидинхлорида (pH 5) со скоростью 3 мл/см -ч. Для точности объем элюента определяли по весу. График селектив- [c.153]

    Для разделения аминокислот (гидролизата белка) методом тонкослойной хроматографии широкое применение находят пластинки, покрытые тонким слоем ионообменной смолы полистирольной природы с сульфокислотными группировками (типа Дауэкс 50X8 ) или ионообменной целлюлозой. Такие пластинки выпускаются промышленностью, например Фиксион 50x8 (Венгрия), или могут быть приготовлены в лаборатории. В этих пластинках катионообменная смола находится в Na-форме. Пластинки стабильны в водных и органических растворителях, инертны по отношению к окислителям и восстановителям, но подвергаются воздействию щелочей и концентрированных кислот. [c.133]

    Электрофорез проводят в присутствии додецилсульфата натрия (ДСН). Таким путем можно определить молекулярные массы субъединиц олигомерных белков [74 — 76]. Молекулы ДСН образуют за счет гидрофобного взаимодействия комплексы с полипептндными цепями, характеризующиеся постоянным отношением ДСН белок. Тогда электрофоретическую поднижность можно выразить как функцию молекулярной массы и сравнить с подвижностью стандартного белка. Метод отличается высоко скоростью (2 — 4 ч) и требует для одного определения, как правило, лишь 10 — 50 мкг белка. В последнее время ДСН-электрофорез проводят также на стеклянных шариках с контролируемым размером пор (120 — 200 нм). Комплекс ДСН — белок не адсорбируется на носителе, интервал определяемых молекулярных масс 3 500 — 12 ООО [77]. [c.362]

    Капилляры, покрытые поли(винилпирролидоном) (ПВП) успешно применяли для разделения белков методами гельпроникающей эксклюзионной хроматографии (ГПХ) и [c.76]

    ИТФ преимущественно применяют для разделения неорганических ионов и органических карбоновых кислот. Из-за проблем детектирования и трудностей, связанных с нахождением подходящих электролитов, для проб неизвестного состава метод ИТФ неприменим. В частности, подходящие носители, т.е. электролиты, необходимы для белков и других сложных смесей, причем для того, чтобы разделять зоны друг от друга, носители должны обладать скоростью, промежуточной между скоростями движения проб. Из-за необходимости поиска подходящих носителей в анализе белков метод ИТФ едва ли найдет широкое применение в биоаналитике. ИТФ, как вытеснительная хро-матография, способен концентрировать разбавленные пробы, поэтому он может быть использован на стадии предварительного концентри-рования перед разделением методом КЭ. Этим разрешаются проблемы, связанные с дозировкой относительно больших объемов разбавленных проб. [c.108]

    Реальность расчета пространственного строения олигопептидов, казалось бы, легко может быть выяснена прямым сопоставлением теоретических результатов с опытными данными. Однако эта обычно столь простая процедура в данном случае чаще всего оказывается невыполнимой по ряду причин принципиального и препаративного характера. Кроме Того, из-за недостаточной чувствительности и некоторых других ограничений, присущих известным экспериментальным структурным методам, сопоставление теории и опыта во многих случаях не имеет того решаю- Цего значения, которое ему придается традиционно. Начнем с рассмот- ния возможностей рентгеноструктурного анализа олигопептидов. В изучении пространственного строения низкомолекулярных пептидов применимость этого метода более ограничена даже по сравнению с белками. Оли-ГОпептиды обладают повышенной конформационной лабильностью, и получение их в кристаллической форме является трудноразрешимой задачей. Но даже если удается вырастить пригодные для рентгенострук-I Horo анализа кристаллы и получить дифракционную картину, возника-ter серьезные осложнения с ее интерпретацией. Для расшифровки рентгенограммы нельзя, например, воспользоваться-методом изоморфного замещения, поскольку внедрение тяжелых атомов в образующие кристал-Яическую решетку олигопептидные молекулы искажает их строение, т.е. данном случае в отличие от белков метод не является действительно Изоморфным. В то же время олигопептиды слишком сложны для использо- [c.283]

    Подобный метод мог бы оказаться особенно пригодным для расщепления пептидов, не содержащих остатков серина или треонина (помимо N-концевых остатков), например пептидов, которые образуются при расщеплении белков методом, связанным с миграцией ацильной группы (см. стр. 216—224). [c.248]

    Высокая чувствительность метода обратного изотопного разбавления с радиореагентом, а также селективность, которую обеспечивает применение индикаторного изотопа, позволяют определять микроколичества смесей первичных и вторичных аминов. Эти методы широко применяли в определениях различных аминокислот в биологических образцах [85—88]. В работе [86], в частности, описано использование этих методов для оценки содержания одиннадцати таких соединений в 1 мг белка. Метод с пипсилхлоридом применялся для анализа гистамина, причем в этом анализе проводилось четыре цикла перекристаллизации соответствующего производного с целью его очистки до получения постоянного значения удельной радиоактивности. После проведения этого анализа было предложено [89] применять данный метод для определения любого амина, который дает кристаллический замещенный д-иод-бензолсульфамид. Этим же методом оценивались микрограммные количества 2,4-диоксипиримидина и его 5-метильного производного [90]. Для разделения пипсильных производных в дополнение к бумажной хроматографии применялись жидкофазная колоночная хроматография [91] и тонкослойная хроматография [92]. Хроматографию на бумаге применяли также для оценки радиохимической чистоты реагента [93]. [c.310]

    Белки обладают явно выраженными гидрофильными свойствами. Растворы белков имеют очень низкое осмотическое давление, высокую вязкость и незначительную способность к диффузии. Белки способны к набуханию в очень больших пределах. С коллоидным состоянием белков связан ряд характерных свойств, в частности явление светорассеяния, лежащее в основе количественного определения белков методом нефелометрии. Этот эффект используется, кроме того, в современных методах микроскопии биологических объектов. Молекулы белка не способны проникать через полупроницаемые искусственные мембраны (целлофан, пергамент, коллодий), а также биомембраны растительных и животных тканей, хотя при органических поражениях, например, почек капсула почечного клубочка (Шумлянского-Боумена) становится проницаемой для альбуминов сыворотки крови и последние появляются в моче. [c.44]


Смотреть страницы где упоминается термин Белки методами: [c.175]    [c.739]    [c.429]    [c.169]    [c.137]    [c.413]    [c.511]    [c.143]    [c.139]    [c.171]    [c.237]   
Аффинная хроматография (1980) -- [ c.244 ]




ПОИСК







© 2025 chem21.info Реклама на сайте