Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы алкилирования ароматических углеводородов

    Полагают, что алкилирование ароматических углеводородов олефинами, спиртами, простыми и сложными эфирами и третичными алкил-галогенидами в большинстве случаев проходит по механизму карбоний-иона как с кислотами, так и с катализаторами Фриделя — Крафтса. [c.134]

    Из всех катализаторов алкилирования ароматических углеводородов наибольшее практическое значение получил хлористый алюминий, обладающий высокой каталитической активностью и широким диапазоном действия. При его использовании удается избежать образования полиалкилированных соединений, можно проводить синтез при небольшом избытке ароматического компонента и применять разбавленные фракции олефинов. [c.355]


    Первые исследования по применению фтористого бора в качестве катализатора алкилирования ароматических углеводородов олефинами были выполнены в 1935 г. За прошедшее время широко изучено алкилирование бензола многими олефинами в присутствии ВРз и его молекулярных соединений. Особое внимание привлекла реакция бензола с этиленом и пропиленом, в результате которой получаются практически важные этилбензол и изопропилбензол. Обычно на 1 моль олефина берут от 2 до 10 [c.146]

    Общая характеристика. Алкилирование ароматических углеводородов включает воздействие на них источником алкильных групп и катализатора, способного превращать алкильные производные в промежуточные соединения, которые реагируют с кольцом. Как будет показано ниже, катализатор превращает источник алкильных групп в карбоний-ионы или в сильно поляризованное промежуточное соединение, которое переносит алкильную группу в кольцо без фактического участия свободных ионов. [c.428]

    Алкилированные ароматические углеводороды. Термическое разложение алкилированных ароматических углеводородов сопровождается значительным числом реакций, на которые оказывают воздействие температура, давление, катализаторы, присутствие водорода или других ароматических углеводородов, действующих как акцепторы водорода, а также олефинов или других продуктов разложения. Так известно, что при пиролизе толуола получаются бензол, дибензил, стильбен, дито-лил, фенилтолил, фенилтолилметан, дитолилметан, дифенил, стирол, нафталин, антрацен и фенантрен. Наличие более длинных боковых цепей или нескольких заместителей увеличивает число возможных реакций однако, несмотря на сложность получаемых продуктов, совершенно ясно обнаруживается одно свойство ароматических кольцевых систем, сохраняющих свою идентичность на протяжении большого количества пиролитических реакций, а, именно, их стабильность тем не менее имеется одна реакция, которая приводит к разрушению ароматических структур — пиролиз в присутствии водорода, особенно в контакте с катализатором, который может служить гидрирующим агентом. В этом случае ароматические кольца сперва гидрируются, а затем расщепляются. Нагревание алкилароматических углеводородов с водородом, особенно в присутствии катализаторов, часто приводит к образованию незамещенных ароматических углеводородов, которые могут подвергаться затем гидрогенолизу. [c.103]

    Из перечисленных галогенидов промышленное применение, как катализатор алкилирования ароматических углеводородов, имеет только хлористый алюминий. [c.268]


    Из других катализаторов алкилирования ароматических углеводородов практическое значение получили серная кислота, безводный фтористый водород, фосфорная кислота на твердом носителе и алюмосиликатный катализатор. [c.360]

    Крек ИНГ алифатической боковой цепи. При термическом крекинге алкилированных ароматических углеводородов в отсутствии активных катализаторов происходит интенсивное расщепление боковых цепей, первичных и вторичных алкильных групп, в то время как третичные алкильные группы большей частью деалкилируются. Добрянский и сотрудники [8] нагревали этил-, изопропил-, и-бутил и третичный бутилбензол от 600 до 650° С и, основываясь на составе полученных продуктов, сформулировали следующие правила, применимые к общему случаю термического разложения алкилированных ароматических углеводородов, [c.106]

    Результаты исследования [54] показывают, что алюмосиликатные катализаторы способны ускорять реакцию алкилирования ароматических углеводородов олефинами и парафинами в широком интервале темнератур и давлений, а также реакции крекинга боковых цепей алкилароматических углеводородов. [c.50]

    Низкая избирательность кислотных катализаторов, обычно используемых при крекинге, обусловливает широкое протекание побочных реакций, таких, как изомеризация, перенос водорода, пере-алкилирование ароматических углеводородов и циклизация. [c.123]

    Катализаторы. При алкилировании ароматических углеводородов (бензол, толуол и др.) хлорпроизводными в промышленности в качестве катализатора используют только хлористый [c.242]

    Научные исследования с целью дальнейшего совершенствования реакции алкилирования ароматических углеводородов привлекают большое число ученых во всем мире. На базе теоретических разработок усовершенствован широко распространенный метод алкилирования при контакте с хлоридом алюминия и внедряются перспективные гетерогенные катализаторы. Изучается возможность использования данного процесса для получения синтетической нефти из угля. [c.7]

    Цеолиты. В последние годы стали успешно применять в качестве катализаторов реакции алкилирования ароматических углеводородов олефинами и спиртами. [c.25]

    При алкилировании ароматических углеводородов олефинами роль катализаторов заключается в генерировании ионов карбония и последующей атаке ароматического ядра. В общем виде это взаимодействие можно представить схемой  [c.102]

    На выход и структуру целевых продуктов, получаемых при алкилировании ароматических углеводородов, большое влияние оказывают не только параметры реакции электрофильного замещения в ароматическом ряду, но и исходные компоненты. Значительные осложнения бывают связаны с влиянием продуктов реакции на кинетические и термодинамические факторы изомеризационных превращений образующихся продуктов, дезактивацию катализаторов и т. д. [c.162]

    Одной из важнейших реакций сложного процесса алкилирования ароматических углеводородов в присутствии галогенидов металлов является переалкилирование. Роль этой реакции трудно переоценить, так как она позволяет резко снизить содержание побочных продуктов, в том числе полиалкилбензолов, и тем самым повышает выход целевых моноалкилбензолов, увеличивает стабильность и активность катализаторов, сокращает энергетические расходы процесса и значительно полнее позволяет использовать исходные реагенты. [c.171]

    Процесс алкилирования изобутана пропиленом и бутиленами предназначен для получения алкилатов — высокооктановых компонентов бензина. Алкилирование бензола пропиленом проводят с целью получения изопропилбензола — также высокооктанового компонента бензина, либо с целью получения сырья для производства фенола и ацетона. В результате алкилирования бензола этиленом получают этилбензол, который путем дегидрирования превращают в стирол — сырье для производства каучука. Катализаторами алкилирования изобутана олефинами чаще всего служат серная и фтористоводородная кислоты. При алкилировании ароматических углеводородов олефинами применяют ортофосфор-ную кислоту на твердом носителе и хлористый алюминий. [c.197]

    Авторами на протяжении многих лет изучалась реакция алкилирования карбоновых кислот, ароматических углеводородов, фенолов и их производных этиленовыми углеводородами. Исследования проводились в присутствии катализаторов на основе фтористого бора, который, как известно, за последние десятилетия стал одним из распространенных катализаторов в органической химии [14] и особенно эффективным оказался в процессах алкилирования. Эти наши исследования и составляют основу данной монографии. В связи с тем, что алкилбензолы и некоторые их производные в настоящее время широко используются в качестве исходных продуктов для различных синтезов через гидроперекиси, в монографию включена специальная глава — Автоокисление алкилароматических углеводородов . Эта глава особенно наглядно показывает значение реакции алкилирования ароматических углеводородов. Она написана главным образом на основе литературных данных и включает наши исследования, выполненные за последние годы. [c.5]


    А. АЛКИЛИРОВАНИЕ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ ОЛЕФИНАМИ В ПРИСУТСТВИИ КАТАЛИЗАТОРОВ НА ОСНОВЕ ВРз [c.70]

    Из изложенного можно сделать вывод, что применение в промыптлен-ности в качестве катализатора алкилирования ароматических углеводородов комплекса ортофосфорной кислоты и фтористого бора поможет улучшить производство важных для народного хозяйства продуктов. [c.421]

    Н. Г. Сидорова и И. П. Цукерваник [139] показали возможность алкилирования ароматических углеводородов олефинами посредством металлического алюминия. Алюминий был предложен в качестве катализатора алкилирования ароматических углеводородов галоидопроизводными и полигалоидопроизводными [140]. Показано, что алкилирование может протекать как по ионному механизму (на кислотных катализаторах), так и но радикальному (на металлических катализаторах). Установлена пригодность Т1, Мо и Сг как катализаторов реакций алкилирования [141]. [c.49]

    Оба основных механизма — а) крекинг над кислотными катализаторами по ионному механизму и б) термический крекинг по радикальному механизму (при отсутствии катализаторов) соверщенно очевидны. В случае каталитического крекинга постулированные выше ионные реакции являются обратными низкотемпературным (от О до 100° С) реакциям присоединения, протекающими над кислыми катализаторами, а именно, полимеризации олефинов, алкилированию ароматических углеводородов олефинами и алкилированию изопарафинов олефинами. Низкотемпературные реакции над кислыми катализаторами, происходящие, как правило, с участием олефинов, дог1 точно хорошо изучены, и суп ,естБующая по этому вопросу обширная литература [34] позволяет сделать вывод, что механизм этих реакций характеризуется образованием иона карбония как промежуточного продукта. [c.115]

    Это отщепление является реакцией, обратной алкилированию ароматических углеводородов олефинами. Последняя — хорошо и шестная низкотемпературная реакция над кислыми катализаторами, интерес к которой в последнее время вновь возрос в связи с ее механизмом, особенно над катализаторами Фриделя-Крафтса [6]. Действительно, общая теория замещенпя ароматических углеводородов в кислой среде связана с механизмом каталитического крекинга ароматических углеводородов. [c.129]

    Механизм алкилирования ароматических углеводородов. Считалось общепринятым, что алкилирование ароматических углеводородов идет через стадию атаки на них карбоний-ионов, нричем карбоний-ионы образуются в результате воздействия катализатора на олефины, спирты или галоидалкилы [259] [ЬХХУ1]. [c.435]

    Многие другие катализаторы реакции Фриделя—Крафтса существуют также в димерной форме (напрпмер, хлорное железо и хлористый галлий). Очевидно, те же выводы окая утся справедливыми и для этих веществ. Действительно, возможно, что те жо доводы можно распространять даже на такие катализаторы реакции Фриделя-Крафтса, как трехфтористый бор, которые нормально существуют только в виде мономера. Так, например, алкилирование бензола в/ гор-метилбутиловым эфиром протекает с ничтожной скоростью, если соотношение трехфтористы1> бор эфир меньше 0,9, медленно при соотношении, равном 1,0, и быстро, когда оно достигает 1,08 [73]. Это наблюдение можно было бы объяснить, если бы димерная форма являлась значительно более сильным электрофильным агентом, чем мономерная. Таким образом, можно предположить, что реакция, ведущая к алкилированию ароматических углеводородов, проходит через образование промежуточного соодинепия типа [c.438]

    Теоретические основы и применение реакций алкилирования парафиновых углеводородов yffie рассматривались в предыдущих главах. Алкилирование ароматических углеводородов подобно алкилированию парафшюв к концу 30-х годов XX в. нашло значительное применение в нефтяной промышленности, что в значительной мере было обусловлено политическими событиями, прешедшими к второй мировой войне. Одпако пути развития этих двух процессов сильно различны. В то время как промышленное применение алкилирования парафинов должно было ожидать открытия основной реакции, подыскания подходящих катализаторов и подбора рабочих условий, алкилирование ароматических углеводородов уже осуществлялось в химической промышленности в течение десятков лет, поэтому задачи, связанные с применением его в больших масштабах, представляли собой главным образом технологические проблемы. [c.488]

    Однако в настоящее время другие области применения алкилирования ароматических углеводородов в значительно большей мере определяют объем производства продуктов алкилирования. Эти области применения будут рассмотрены более детально, особое внимание будет уделено термодинамике и реакциям процесса, а также обоснованиям, обусловливающим выбор катализатора и условий реакции. Обсуждение деталей химико-техпологических и конструкторских вопросов, а также вопроса экономики выходит за пределы данного обзора. Широкий круг теоретических вопросов, связанных с данной реакцией, рассматривался в других местах (см. гл. XXXI и LVI). [c.489]

    Опыт исследовательских работ последних лет показывает, что, несмотря на упомянутые многочисленные затруднения, при дифференцированном подходе к отдельным стадиям синтеза присадок можно создать узлы непрерывного действия. Непрерывное ведение процесса особенно рационально в тех случаях, когда реакции протекают с большой скоростью. В настоящее время в опытном и опытно-промышленном масштабах уже созданы реакторы, обеспечивающие непрерывное ведение некоторых стадий синтеза присадок алкилирования фенола олефинами на твердых катализаторах, сульфирования ароматических углеводородов, конденсации алкилфенола с формальдегидом, нейтрализации и сушки промежуточных продуктов синтеза, фосфоросернения и др. [c.222]

    В качестве катализаторов процесса алкилирования могут быть использованы как протонные кислоты, так и кислоты Льюиса. Протонные кислоты широко применяют при алкилировании ароматических углеводородов олефинами и спиртами, причем их активность падает в ряду НР>Н2304 НзР04. [c.17]

    Изучение закономерностей при алкилировании ароматических углеводородов олефинами до сих пор остается объектом пристального внимания исследователей, так как именно непредельные углеводороды остаются основными алкилирующими агентами в промышленности. Ранее предполагали, что при использовании катализатора H I+AI I3 в качестве промежуточного реакционного компонента образуются алкилгалогениды  [c.66]

    Высказано мнение, что алкилирование ароматических углеводородов может протекать не в результате промежуточного образования ионов карбония [53, с. 98], а эфиров кислоты, дающих при низких температурах с ароматическими ядрами соединения типа я-комплексов. С повышением температуры, как предполагают авторы, происходит дегидратация спиртов и последующее алкилирование бензола олефинами. В статье [.176] хотя и не оспаривается специфичность действия различных катализаторов и других факторов, авторы считают, что полученных в работе [53, с. 198] данных недостаточно для отказа от общепринятых положений, связанных с, образованием карбока-тиоиов. [c.102]

    Ароматические углеводороды легко вступают в реакцию замещения с выделением протонов, так как энергетически выгоднее сохранить сопряженную систему. При алкилировании ароматических углеводородов олефинами, вторичными и третичными спиртами в присутствии комплексов катализаторов ВРз й ВРз с Н2О, Н3РО4 и с нормальными спиртами С1—Се в случае гомогенной жидкой фазы (ВРз-н-С4Н90Н, ВРз-н-СбНиОН) реагент образует стабильный карбониевый ион. В случае гетерогенной жидкой фазы (ВРз-НгО, ВРз-НзР04, ВРз-СНзОН, ВРз- [c.103]

    Поэтому алкилирование нафталина проводят в среде растворителя [19] например, этилирование проводят в среде ксилола, при этом вначале алкилируется ксилол, а затем уже нафталин поли-алкилкснлолами. Трудности алкилирования возникают и из-за ллохой растворимости янкомплбксов нафталина и других полициклических ароматических углеводородов с катализаторами в соответствующем углеводороде. Растворители же обеспечивают гомогенизацию комплексов и улучшают контакт катализатора с ароматическим углеводородом. [c.26]

    Пентаметилбензол в присутствии алюмосиликатного катализатора подвергается реакциям деалкилировапия и диспропорционирования. При 400 °С и 1,0 ч 1 глубина превращения пентаметилбензола 30%, в том числе в продукты деалкилирования, главным образом тетраметилбензолы, превращалось около 20% и в продукты диспропорционирования — около 10%. Результаты изомеризации маточного раствора, полученного после выделения дурола из продуктов алкилирования ароматических углеводородов С в в системе с движущимся катализатором, приведены в табл. 5.9. [c.236]

    Соединение ВРз Н3РО4, кроме высокой каталитической активности в реакции алкилирования ароматических углеводородов олефинами, имеет ряд других очень важных цреимуществ и не только по сравнению с молекулярными соединениями фтористого бора, но и с другими, известными катализаторами для этой реакции. С этим катализатором получаются более высокие выходы продуктов моно-алкилирования, что наглядно видно из не1 данны "Ш алкилированию бензола на разных ката-  [c.71]


Смотреть страницы где упоминается термин Катализаторы алкилирования ароматических углеводородов: [c.71]    [c.358]    [c.235]    [c.430]    [c.437]    [c.488]    [c.500]    [c.126]    [c.49]    [c.54]    [c.122]    [c.118]    [c.64]    [c.65]   
Фенолы (1974) -- [ c.175 , c.176 ]

Технология нефтехимического синтеза Часть 1 (1973) -- [ c.111 , c.114 , c.115 , c.117 , c.118 ]




ПОИСК





Смотрите так же термины и статьи:

Катализаторы углеводородов



© 2025 chem21.info Реклама на сайте