Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь в боридах

    Бориды. Бор взаимодействует при высоких температурах (1300— 2000° С) в атмосфере аргона с большинством металлов (кроме щелочных, которые при этих температурах возгоняются), образуя бориды состава Ме В . В них сложным образом переплетаются металлическая и ковалентная связи. Один и тот же металл может образовать с бором ряд соединений. При относительном недостатке атомов бора они изолированы друг от друга, при избытке — образуют цепочки, сетки и каркасы. Бориды могут иметь строго определенный состав и быть фазами внедрения, подобно карбидам, нитридам и т. д. [c.174]


    При образовании боридов тяжелых металлов происходит обобществление не только валентных, но и внутренних электронов достраивающегося -подуровня. В результате возникает прочная межатомная связь. [c.174]

    Периодический закон и периодическая система и на сегодня являются основой химической классификации. Так, дальнейшее развитие химии привело к появлению целых классов новых неорганических соединений. Это гидриды, карбиды, нитриды, бориды и другие, свойства и условия образования которых целиком определяются положением элементов в периодической системе, такими их характеристиками, как величины ионизационных потенциалов, размеры атомов, тип химической связи и др. В качестве примера на рис. 5.7 представлена классификация гидридов элементов в соответствии с положением их в периодической системе. [c.102]

    Силициды. Атом кремния имеет сравнительно большой радиус (1,17 А) и большинство силицидов, строго говоря, нельзя относить к соединениям внедрения — они занимают промежуточное положение между соединениями внедрения и интерметаллическими соединениями. При образовании твердых растворов с переходными элементами IV группы атомы кремния могут входить в решетку и по принципу внедрения, и по принципу замещения. Кремний — электронный гомолог углерода, поэтому единственный фактор, мешающий образованию фаз внедрения,— размерный. В низших силицидах сохраняется преимущественно металлический характер связи, а структура их сходна со структурой металлов. В высших силицидах наблюдается тенденция к преобладанию ковалентной связи и образованию сложных структур. Силициды обнаруживают сходство с карбидами, с другой стороны, они во многом родственны боридам. [c.235]

    Окислы. Атом кислорода невелик, его радиус меньше радиусов атомов углерода и азота однако настоящие фазы внедрения кислорода — только твердые растворы и низшие окислы переходных металлов. В силицидах и боридах фактором, препятствующим образованию фаз внедрения, является большой атомный радиус, в окислах такой фактор — электронная структура атома кислорода. Электронная оболочка атома кислорода ls 2s 2p имеет два неспаренных электрона. Кислород подчиняется правилу октета, и завершенная электронная структура может быть получена путем приобретения двух электронов. Поэтому у кислорода донорная способность ослаблена склонностью к поглощению электронов. Цирконий и гафний легче отдают электроны, поэтому только титан образует с кислородом фазу переменного состава на основе окисла TiO с преимущественно металлической связью (радиус кислорода в ней 0,7 A) и координационным числом титана 6. [c.236]


    Кристаллохимическое строение бинарных соедивений. Систематика бинарных соединений по характеру химической связи позволяет на основании положения компонентов в Периодической системе прогнозировать особенности кристаллохимического строения этих соединений. Руководящим принципом при этом является распо-пожение компонентов относительно границы Цинтля. Если оба компонента располагаются слева от границы Цинтля, т.е. у обоих существует дефицит валентных электронов, то образующиеся промежуточные фазы обладают металлическими свойствами (исключение составляют некоторые бориды). Когда оба компонента размещены справа от этой границы, т.е. обладают достаточным числом валентных электронов для образования ковалентных связей, образующиеся бинарные соединения характеризуются ковалентным типом взаимодействия. В случае нахождения компонентов по разные стороны от границы Цинтля возможно образование соединений с различным доминирующим типом химической связи — ионным , ковалентным и металлическим. При этом существенную роль играют три фактора. Во-первых, это разность электроотрицательностей. При значительной разности ОЭО образуются ионные солеобразные соединения (например, галогениды щелочных металлов). При небольшой разности ОЭО взаимодействие компонентов приводит к образованию бинарных соединений с преиму- [c.257]

    Гораздо большее значение имеет парциальное (частичное) гидрирование ацетиленов. Возможность селективного осуществления этой реакции определяет, как правило, высокий выход олефинов. Наиболее подходящими катализаторами являются поверхностные палладиевые катализаторы, особенно частично дезактивированные ацетатом свинца (катализатор Линдлара, см. ГЗ), хинолином или гидроксидом калия, и никелевые катализаторы (скелетный, а также так называемые бориды никеля Р-1 и Р-2 и К1с-катализатор, получаемые восстановлением ацетата никеля соответственно борогидридом натрия в водно-спиртовом растворе и гидридом натрия в тетрагидрофуране в присутствии третичного амилового спирта). Скорость гидрирования тройной связи на этих катализаторах выше, чем двойной, в то время как на других катализаторах такого различия или нет, или, наоборот, двойная связь гидрируется с большей скоростью (особенно если это концевые связи). Замедление реакции гидрирования алкинов после поглощения 1 моль водорода значительно облегчает необходимое его дозирование. [c.43]

    Мы не будем приводить здесь обзор структур этих карбидов, которые часто достаточно сложны. При низком содержании углерода отмечено некоторое их сходство с боридами, но когда содержание углерода возрастает, это сходство уменьшается, так как углерод не проявляет присущей бору тенденции к образованию протяженных систем со связями неметалл — [c.52]

    Энтальпии, сЕободные энтальпии образования и энергии связи некоторых молекулярных соединений бора. Существенное значение для термохимии и молекулярной спектроскопии имеют энтальпии, свободные энтальпии образования и энергии связи боридов, имеющих молекулярную структуру. Данные, полученные в 1952 г. уже сильно устарели не только в связи с проведением новых исследований теплот образования, но, в первую очередь, вследствие того, что недавно найдекэ гораздо более высокое значение энергии сублимации бора (140,9+2 ккал1г-мол). [c.8]

    Для нитридов, фосфоридов, карбидов, силицидов и боридов в связи со сложным составом фаз данные разных авторов нередко значительно расходятся, в особенности для и ЛО . Поэтому для зтих соединений литература здесь представлена шире, чем для других. [c.372]

    Соединения бора. Бор относится к промежуточным элементам, н из его соединений резко враделяются две группы 1) соединения с окислительными элементами, атомы когорых связаны ковалентными связями с атомом бора в степени окисления +3, и 2) соединения с метялличсскнми элементами — бориды, в которых действуют свя )и металлического характера. Особое место занимают соедипення бора с водородом н углеродом. [c.347]

    Исследованиями ученых многих стран установлено, что к соединениям переменного состава относятся не только оксиды, но н субоксиды, халькогениды, силициды, бориды, фосфиды, нитриды, многие другие еорганические вещества, а также органические высокомолекулярные соединения. Во всех случаях, когда сложное вещество имеет молекулярную структуру, оно представляет собой соединение постоянного состава с целочисленными стехиометриче-скими индексами. Некоторые ионные кристаллы и даже атомные кристаллы и металлы могут также подчиняться законам стехиометрии. Но в случае немолекулярных кристаллов, как отмечает Б. Ф. Ормонт, уже не молекула, а фаза т. е. коллектив из Л/о (числа Авогадро) атомов, определяет свойства кристаллической решетки . Он предлагает для подобных веществ расширить формулировку закона постоянства состава Если... в твердом агрегатном состоянии соединение не имеет молекулярной структуры, то в зависимости от строения атомов и вытекающего отсюда строения фазы и характера химической связи в ней состав соединения и его свойства могут сильно зависеть от путей синтеза. Даже при одном и том же составе свойства могут сильно зависеть от условий образования . Б. Ф. Ормонт подчеркнул необходимость исследования зависимости условия образования—состав — строение — свойства,— направленного. на установление связи между условиями образования, химическим и фазовым составом системы, химическим составом и строением отдельных фаз и их свойствами. Нетрудно заметить, что добавление к обычной формуле, закона постоянства состава слов состав срединения зависит от условий его образования ,— лишает закон постоянства состава его смысла. В то же время указание на важность изучения в связи с проблемой стехиометрии не только состава, но и строения твердых веществ представляется очень существенным. [c.165]


    Металлические вещества, нестехиометрические соединения. Переходные металлы склонны к образованию соединений включения, в которых атомы X занимают пустоты в плотнейшей упаковке металла. Часто эти соединения имеют нестехиометри-ческий состав. Их отличительные свойства — металлический блеск, высокая твердость и хорошая электропроводность, что связано с сохранением зонной структуры металла. У некоторых нитридов обнаружена даже сверхпроводимость. Сами металлы и их соединения включения (а также карбиды и бориды) по величине проводимости можно расположить в следующий ряд металл > карбиды > фосфиды > нитриды > бориды. [c.533]

    КИ, периодический закон и основанная па нем периодическая система элементов Д. И. Менделеева. Главной задачей Н. х. является установление строения химических элементов, изучение состава и свойств соединений в связи со строением, установление строения молекул. Другая важнейшая задача Н. х.— разработка и научное обоснование способов создания новых материалов с нужными для современной техники свойствами. Одним из основных направлений Н. х. в XX в. явилось изучение химии комплексных соединений, а также изучение соединений, в которых атомы проявляют [ алентность, не подчиняющуюся классическим представлениям,— гидридов, карбидов, нитридов, боридов, карбонилов и др. В Н. X. широко применяются два основных метода химического исследования — синтез и анализ. Всего к середине XX в. было изучено около 00 тыс. неорганических соединений. Новый этап в развитии И. х. наметился в последние годы в связи с развитием ядерных исследований, новой техники, требующей новых материалов с нужными для современной техники свойствами. [c.173]

    Получены бориды алюминия А1В2, А1В д, к Ец. Изучение системы В—А1 продолжается. В связи с малой плотностью, химической стойкостью, прочностью и другими ценными свойствами бориды алюминия находят применение в промышленности, включая ядерную энергетику. [c.275]

    Периодический закон — научная основа и метод многочисленных исследований. Назовем некоторые направления (темы), которые еще ждут дальнейших исследований. Это работы но теории химической связи и электронной структуры молекул химия комплексных соединений, включая редкоземельные элементы, а также соединения, имеющие полупроводниковый характер получение гю-лупроводниковых материалов, развитие химии твердого тела, синтез твердых материалов с заданным составом, структурой и свойствами поиски новых материалов на основе твердых растворов изоморфных боридов, карбидов, нитридов и оксидов переходных металлов IV и V групп получение сплавов и катализаторов на основе переходных элементов синтез неорганических веществ, включая неорганические полимеры получение веществ высокой [c.427]

    Значение теории цепных процессов для судеб химической технологии трудно переоценить. С этой теорией тесно связано развитие и таких разделов химической технологии, в основе которых лежат процессы пирогепетнческого разложения веществ, теплового взрыва, радиационной химии, взрыва конденсированных взрывчатых веществ, термического крекинга нефтей, алкилирования, карбони-лирования углеводородов, гидро- и дегидрогенизации органических соединений, процессы горения в самом широком смысле, в том числе процессы, самораспространяющегося высокотемпературного синтеза (СВС), продуктами которого являются карбиды, силициды, бориды и т. п. соединения переходных металлов. [c.150]

Рис. 2. Образование комплексных ионов гидроксония (аквония) и тетрафтор-борида (возникновение координационной связи) Рис. 2. <a href="/info/377396">Образование комплексных ионов</a> гидроксония (аквония) и тетрафтор-борида (возникновение координационной связи)
    Электрические свойства карбидов, нитридов, боридов и силидов указывают на то, что образование ковалентных связей электронами -подуровня и электронами присоединяющегося атома (С, 81, В, Ы) одновременно может возбуждать часть электронов, которые обусловливают металлическую элекгропровод-ность. Вещества с металлической проводимостью или металлообразные вещества образуют, как правило, соединения металлов с неметаллами, которые имеют близкие значения ионизационных потенциалов. [c.110]

    Как правило, -элементы не дают бинарных соединений определенного состава с водородом (кроме I, II и III групп). Весьма характерны для них карбиды, нитриды, фосфиды, бориды и т. п. Переходные элементы могут образовывать соединения, не имеющие аналогов среди соединений непереходных элементов, типа [Ре(СО)5]2, [Fe( 0)2(N02)], K[Nb( 0)5], Ks [Fe( N)sNO], (я-С.5Н5)2ре. Для тяжелых переходных 5 -элeмeнтoв характерны кластерные соединения, в которых наряду с ковалентными связями имеют место связи металл—металл (М—М) типа (ТабС1б)2С12- [c.499]

    К какому типу относится связь между атомами в соединениях фто-бора, борид магния 7 эсуществшъ следующие превращения  [c.61]

    Бориды переходных металлов являются фазами промежуточного характера между интерметаллическими соединениями и фазами внедрения (типичный пример фаз внедрения — карбиды). Бориды, как и многие силициды переходных металлов, имеют разнообразную п сложную структуру, что связано со способностью атомов бора (соответственно кремния) образовывать между собой валентные связи. Силициды тугоплавких металлов в отличие от карбидов, нитридов и многих боридов ие являются фaзa uI внедрения (из-за большей величины атомов кремния). [c.325]

    В пробирку влейте 1—2 мл раствора соляной кислоты и всыпьте в нее (п о д т я г о й ) немного порошка борида магния MgзB2. Наблюдайте выделение газа. Составьте уравнение реакции. Почему при этой реакции не получается ВНз Составьте структурную формулу ВаНв и укажите природу связей в этой молекуле. [c.172]

    Карбиды, силициды, бориды. Сопоставляя особенности строения и свойств рассмотренных выше классов бинарных соединений, можно прийти к выводу, что при переходе от галогенидов к халькогенидам и далее к пниктогенидам наблюдается постепенное уменьшение ионного вклада в химическую связь, что сопровождается изменением преобладающих типов кристаллических структур. Уже среди пниктогенидов встречаются фазы с ковалентно-металлическим характером взаимодействия компонентов. Еще более эта тенденция усиливается у карбидов, силицидов и боридов. Возрастающее число металлоподобных фаз среди этих соединений позволяет заключить, что они являются связующим звеном между бинарными соединениями металлов с неметаллами и интерметаллическими соединениями. [c.277]

    Все перечисленные свойства и термодинамические характеристики (АН, АО и 5) зависят от состава фаз, поэтому при их описании надо точно указывать результаты химического и фазового анализа. Бориды переходных металлов являются фазами промежуточного характера между интерметаллическимн соединениями и фазами, внедрения (типичный пример фаз внедрения — карбиды).. Бориды, как и многие силициды переходных металлов,, имеют разнообразную и сложную структуру, что связано со способностью атомов бора (соответственно кремния) образовывать между собой валентные связи. Сплициды тугоплавких металлов в отличие от карбидов, нитридов-н многих боридов не являются фазами внедрения (из-за большей величины атомов кремния). [c.403]

    Износостойкость белого чугуна при абразивном воздействии зависит от его механических свойств и свойств отдельных структурных составляющих (микротвердости, прочности, вязкости, формы, взаимного расположения и связи, количественного соотношб ния). Основные структурные составляющие белого чугуна располагаются по возрастанию микротвердости в следующем порядке эвтектоид (перлит, сорбит, троостит), аустенит, мартенсит, цементит, легированный цементит, карбиды хрома, воль ама, ванадия и других элементов, бориды. [c.51]

    Диффузионное насыщение стальных изделий бором приводит к образованию на их поверхности слоя, состоящего из боридов FeB и Fe В, а также боридного цементита, если в стали содержится повышенное содержание углерода. Бориды железа обладают высокой коррозионной стойкостью в ряде агрессивных сред,в связи с чем можно было бы ожидать существенного повышения сопротивления коррозионно-усталостному разрушению борированных деталей. Нами показано, что борирование при глубине слоя боридов 0,1-0,2 мм повышает предел выносливости образцов из средйе-углеродистой стали с 250 до 300-310 МПа, а в 3 %-ном растворе Na I условный предел выносливости увеличивается с 50 до 100 МПа. Отрицательное влияние борирование оказывает на сопротивление усталости высокопрочных легированных и закаленных сталей, у которых предел выносливости после насыщения может снизиться в несколько раз. Условный предел выносливости при этом увеличивается незначительно. Таким образом, наблюдается несоответствие ме>кду коррозионной стойкостью в ненапряженном состоянии и коррозионной выносливостью борированных сталей. Это несоответствие объясняется пористостью боридного слоя, которая при действии циклических механических напряжений обеспечивает лучший контакт коррозионной среды о основным металлом, чем в ненапряженном металле. [c.174]

    Наряду с кристаллическими мембранами в ИСЭ используются также гетерогенные мембраны (мембраны Пунгора), в которых твердый материал с ионной проводимостью в виде тонкодисперсного порошка помещен в инертную матрицу. Благодаря этому удается получить мембраны из соединений, которые не образуют кристаллы. В качестве активных веществ в таких мембранах применяют самые разнообразные материалы (труднорастворимые соли металлов, оксиды, карбиды, бориды, силициды, хелатные соединения, ионообменные смолы), а в качестве связующего материала - парафин, коллодий, поливинилхлорид, полистирол, полиэтилен, силиконовый каучук и др. Разработаны электроды с мембранами, селективными по отношению к ионам Р", СГ, Вг", Г, 8 , Ag", Ва ",Са ", 80/ , Р04 , а также ртутный электрод с мембраной из Hg8 или Hg8e в эпоксидной матрице. Некоторые из электродов выпускаются промышленностью. Считается, что они менее чувствительны к [c.200]

    Некоторые свойства покрытий N1—6 после отжига приведены в табл. 34. Под влиянием структурно-фазовых превращений, происходящих в период отжига, изменяются свойства покрытий сплавом N —6 твердость, износостойкость, магнитные характеристики, сопротивление коррозионному разрушению, удельное электрическое сопротивление и др. Увеличение твердости связано с перестройкой -твердого раствора никеля, зародышеобразова-нием и выделением фазы боридов, а дальнейшее уменьшение твердости — с процессом рекристаллизации. [c.62]

    Случай а иллюстрируется структурой NiAs, в которой Ni окружен щестью соседними атомами As, но, кроме того, связан еще с двумя атомами Ni. Случай б представляет нормальное бинарное соединение со связями только типа А—X, тогда как в случае в, примером которого служит борид FeB, атом X (бор) окружен щестью атомами А (железо), но дополнительно связан еще с двумя атомами X (бор). [c.364]

    Ск рсохимпя бира во многих сго соединениях с галогенами (исключая В С1л), кислородом, азотом, фосфором довольно проста. Как правило, оп образует три компланарные плн четыре тетраэдрические связи. Более сложная стереохимия бора в электронодефицитных системах (элементный бор, некоторые бориды п бораны) рассмотрена отдельно. Плоское расположение трех связей атома бора наблюдается во многих соединениях типа ВХз и ВКз (табл. 24.1), в циклических молекулах, подобных упомянутым ранее, во многих кислородсодержащих иоиах (см. следующий раздел), а также в кристаллах, иапример в графитоподобной структуре BN (разд. 24.6.1) и в АШо (разд. 24.4). [c.167]

    Рассмотренный каркас лежит в основе структур и некоторых боридов. Группы атомов УХУ могут располагаться вдоль внутренней диагонали ячейки (рис. 24.2, а), поскольку в центре ячейки существует октаэдрическая пустота, окруженная икосаэдрами АВСВЕР. В структуре В С это лииейные группы С—С—С, причем вместо 3-центровых связей в экваториальной плоскостн образуются связи между шестью экваториальными атомами бора групп В 2 н концевыми атомами С цепочек. Таким образом, половина атомов бора связана с шестью атомами В (как в а-В12), а остальные —с пятью атомами В и одним [c.170]


Смотреть страницы где упоминается термин Связь в боридах: [c.437]    [c.122]    [c.348]    [c.510]    [c.341]    [c.53]    [c.50]    [c.75]    [c.78]    [c.146]    [c.234]    [c.370]    [c.331]    [c.341]    [c.472]    [c.68]    [c.171]    [c.364]    [c.175]   
Физическая химия силикатов и других тугоплавких соединений (1988) -- [ c.12 , c.13 ]




ПОИСК





Смотрите так же термины и статьи:

Бориды



© 2024 chem21.info Реклама на сайте