Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коллектор для хроматографии

    Характерным для жидкостной хроматографии является анализ вытекающего из колонки раствора химическими, физико-химиче-скими пли физическими методами. При этом вытекающий из колонки раствор собирают в виде отдельных фракций. Этот прием может быть также использован для препаративного выделения веществ. Обычно для сбора фракций применяют специальные коллекторы, работающие автоматически (рис. П.21). [c.97]


    Жидкость твердое кристаллизация основы из раствора 1) осаждение ] соединений основы 2) электролиз, хроматография и др. 1) соосаждение примесей с коллектором 2) хроматография, цементация, электролиз [c.197]

    Влияние внешней температуры на работу ДИП незначительно, необходимо лишь прогревать штуцер детектора, к которому присоединяется колонка, для исключения конденсации анализируемых веществ. Конденсация паров воды, образующейся при горении водорода, весьма нежелательна, особенно на изоляторе электрода-коллектора, так как это приводит к нарушению изоляции высокоомной входной цепи электрометра и неустойчивости нулевой линии хроматографа. Как правило, прогрева детектора от пламени водорода достаточно для исключения конденсации воды внутри ячейки. [c.59]

    Количественные разделения можно производить химическими или физическими методами (табл. 52). К числу химических методов относятся фракционное осаждение, соосаждение на коллекторах, применение органических реагентов-осадителей, электрохимическое разделение (электролиз на ртутном катоде и внутренний электролиз), хроматографическое разделение, например путем ионообменной хроматографии. К числу физических методов относятся экстракция при помощи органических растворителей, возгонка (сублимация), дистилляция (отгонка летучих компонентов). [c.278]

    Денситометры, флюориметры и коллекторы фракций были описаны в гл. 3. Так как в случае ионообменной хроматографии объем препарата, особенно при градиентной элюции, может быть значительным, принято сбор и нумерацию фракций начинать с момента внесения препарата на колонку. [c.295]

    Так, разделить большие количества на аналитическом хроматографе с колонкой диаметром 10—14 мм можно при увеличении продолжительности его работы, чего можно достигнуть путем автоматизации процесса ввода и сбора образца. Для этого хроматограф должен быть оснащен коллектором фракций, автоматическим устройством ввода пробы и компьютером, управляющим их работой. Для некоторых жидкостных насосов предусмотрена возможность установки специальных препаративных головок, иногда с рециклом разделенных фракций, позволяющих использовать эти насосы с колонками диаметром 20—25 мм (при производительности до 20—30 мл/мин) или 35—50 мм (до 100 мл/мин). Соответственно петлевой инжектор должен иметь достаточно широкие внутренние каналы и возможность установки петли размером до 10 мл. Конструкция и геометрия петли должны быть такими, чтобы обеспечивалось минимальное размывание образца при вводе пробы длинные петли малого диаметра без резких изменений геометрии потока предпочтительней коротких и большого диаметра. Нередко удается заметно улучшить разделение, одновременно уменьшив размывание образца при вводе пробы путем ввода пробы без инжектора, установив вместо него тройник малого Ир объема и вводя пробу вспомогательным насосом высокого ржавления, работающим короткий отрезок времени. Менее удобным способом, дающим сходный результат, является ввод больших проб на колонку шприцем с использованием инжектора с прокалываемой резиновой мембраной, или краном малого объема, однако при этом ввод пробы (из-за ограниченного давления, которое можно создать шприцем даже хорошего качества около 5 МПа для шприца емкостью 1 мл и около 1 МПа—для шприца емкостью 10 мл) осуществляют при остановке потока (выключении основного насоса). [c.60]


    Так как колонку для ионообменной хроматографии обычно присоединяют к коллектору фракций или к установке для непрерывной регистрации, целесообразно придавать ей форму, показанную на рис. 492, б. Для отвода элюата удобно присоединить к выходному отверстию колонки капиллярные трубки из синтетических материалов (тефлона, полиэтилена, поливинил- [c.552]

    Если разделяемые вещества окрашены, то удается без особого труда следить за их продвижением и отбирать отдельные фракции. Однако в большинстве случаев хроматографируемые вещества бесцветны. Практика показала, что для количественной оценки процесса разделения необходимо непрерывно собирать большое количество (несколько сот) относительно небольших фракций (0,5—20 мл). Поскольку процесс хроматографирования часто длится непрерывно несколько дней, ясно, что проведение такой операции без автоматизированной аппаратуры было бы связано с большими трудностями. Поэтому были сконструированы автоматические коллекторы фракций. Поскольку применение автоматических сборников имеет большое значение не только для всех процессов разделения на колонках, т. е. для адсорбционной, распределительной и ионообменной хроматографии, но и вообще для автоматизации многих обычных лабораторных операций, ниже приведено детальное описание такого типа приборов. [c.560]

    Этот коллектор отвечает всем требованиям для проведения хроматографии. Его главным преимуществом является то, что он управляется непосредственно от реле насоса без сложных электрических устройств. [c.563]

    Ряд методов с использованием отделения на неорганических коллекторах применен в колоночном варианте. Микроколичества натрия (калия) отделяли от больших количеств хлорида лития методом ионообменной хроматографии на колонке, заполненной сурьмяной кислотой. Сорбированные натрий и калий десорбировали 5 М раство- [c.37]

Рис. 5.1. Блок-схема современного хроматографа ПР — узел подготовки растворителя ГУ — узел формирования градиента Н — насосы Д — дозатор АД — автоматический дозатор К — колонка Т — термостат Р — реактор ДТ — детекторы КЛ — коллектор фракций РОД — система регистрации и обработки данных СУ — система управления. Прямыми линиями обозначены гидравлические соединения узлов, волнистыми — электрические. Рис. 5.1. <a href="/info/50684">Блок-схема</a> <a href="/info/477132">современного хроматографа</a> ПР — <a href="/info/1572812">узел подготовки</a> растворителя ГУ — узел <a href="/info/445112">формирования градиента</a> Н — насосы Д — дозатор АД — <a href="/info/321571">автоматический дозатор</a> К — колонка Т — термостат Р — реактор ДТ — детекторы КЛ — <a href="/info/100445">коллектор фракций</a> РОД — <a href="/info/266064">система регистрации</a> и <a href="/info/231522">обработки данных</a> СУ — <a href="/info/24804">система управления</a>. <a href="/info/208021">Прямыми линиями</a> обозначены <a href="/info/1687481">гидравлические соединения</a> узлов, волнистыми — электрические.
    Если хроматограф используется для препаративных целей, в него входит узел 6 для сбора отдельных компонентов (коллектор фракций) [23]. Устройства для сбора отдельных фракций необходимы для того, чтобы мокно было определить растворенные составные части пробы. Однако при наличии современных чувствительных детекторов они практически не нужны только в особых случаях (например, при измерении радиоактивности и др.) собирают отдельные фракции, либо имеющие постоянный объем, либо собранные за определенный промежуток времени. [c.57]

    Хроматография. С помощью автоматического коллектора собирают фракции по 2 мл. Элюирование начинают буферным раствором pH 5,1, а после 150-й фракции начинают градиентное элюирование. В смеситель заливают 500 мл буферного раствора pH 3,1, а в резервуар — буферный раствор pH 5,1. [c.200]

    Любой жидкостный хроматограф состоит из следующих частей (рис.1) 1 - насос, 2 - узел ввода пробы, 3 - хроматографическая колонка, 4 - детектор, 5 - регистратор (самописец, интегратор или компьютер) 6 - термостат колонок, 7 - узел подготовки элюента с емкостями для элюента, 8 - слив элюата или коллектор фракций. [c.8]

    Основные принципы ионной масе-хроматографии были разработаны В Л Тальрозе и сотр [90, 91] Суть предложенного-ими метода заключалась в том что напряженность магнитно го поля и ускоряющее напряжение подбираются таким образом, что на коллектор попадают и регистрируются только ионы с заданными массами С помощью двухщелевого коллектора одновременно регистрировались два иона с близкими массами, например 43 и 41 Идентификация пиков на масс хроматограммах осуществлялась по характеристическим отношениям интен сивностей пиков выбранных ионов, а количественный анализ — по площадям хроматографических пиков на ионных масс хроматограммах [c.55]

    Имеются разнообразные методы концентрирования микропримесей экстракция, соосаждение с неорганическими и органическими коллекторами, хроматография и ионный обмен, электрохимические методы, дистилляция и сублимация, зонная плавка и др. . [c.10]

    Надкритическая подвижная фаза поступает из печи 4 в печь 6 и, проходя сначала спираль 7 для достижения температуры печи 6, входит в узел ввода проб хроматографа 8, а оттуда. поступает в разделительную колонку 9. Элюат из колонки сжижается при движении через два теплообменника (W) и затем поступает в ультрафиолетовый детектор 11. В тех случаях, когда температура кипения подвижной фазы лежит ниже комнатной температуры, она собирается во вспомогательной системе 12 прежде чем, наконец, попасть в коллектор для фракций 13. В детекторной части поддерживается давление, превышающее давление насыщенного пара, теперь уже жидкой, подвижной фазы 1при комнатной температуре. [c.95]


    Как и в газовой хроматографии, в современной жидкостной хроматографии применяют детекторы, позволяющие непрерывно фиксировать концентрацию определяемого вещества в потоке жидкости, вытекающей из колонки. В жидкостной хроматографии применяют также специальные коллекторы для сбора фракций с последующим их анализом. Однако непрерывное измерение концентрации с автоматической ее записью обладает неоспоримыми преимуществами перед пофракционным анализом. Успех современной жидкостной хроматографии наряду с другими факторами обеспечен именно созданием чувствительных детекторов непрерывного действия. [c.88]

    Этот метод используется при разделении больших количеств исходной смеси. Иа выходе колонки помещают коллектор фракций, с помощью которого можно получать очень чистые (99,999%) индивидуальные вещества. Приемники коллектора связаны с программирующим устройством так, что отбор фракций происходит автоматически при регистрации пика того или иного компонента на ленте самописца. Методы препаративной газовой хроматографии широко применяются в промышленности, чаще всего для разделения двухкомпонентных систем, например для рекуперации паров летучих растворителей, для осушки воздуха, очистки мономеров и при других процессах. [c.281]

    Казалось бы, результаты, приводимые разными авторами, противоречат друг другу, однако сушественную разницу в выводах можно объяснить. Во-первых, такой результат в промысловых условиях мог бы объясняться литологией залежи и условиями разработки [26]. Во-вторых, многие авторы не учитывают тот факт, что остаточная нефть различна по составу в зависимости от условий формирования, в связи с чем необходимо разделение остаточной нефти на адсорбированную и поровую (как это сделано в [41]). Следует отметить, что подавляюшее число исследований остаточной нефти проведено с применением инструментальных методов, таких как ИК-спектрометрия, газожидкостная и жидкостная хроматография, ЯМР-спектроскопия, которые дают качественную характеристику компонентов остаточной нефти. Дополнительным осложнением является значительная неоднородность характеристик пластовых флюидов и коллекторов. [c.31]

    Описанию современной хрэматографической техники (колонок, насосов, детекторов, коллекторов фракций и др.) также посвящена отдельная глава. Наряду с рассмотрением принципов работы этих устройств сюда включены и сопоставляются данные каталогов по последним (на конец 1983 г.) моделям соответствующей аппаратуры, особенно многочисленным для высокоэффективной хроматографии при высоком давлении. В этой же главе приведены подробные рекомендации по общим для всех вариантов хроматографии методическим приемам подготовке колонок, внесению препаратов, осуществлению элюции, детектированию фракций и др. [c.4]

    Иско — коллекторы фракций, спектрофотометрйческий детектор, микроколоночный хроматограф. [c.200]

    В настоящее время благодаря внедрению микронасосов аппаратурная сторона эксперимента, конечно, может быть решена совсем иначе. Хроматографические операции с микронасосами можно автоматизировать этой теме бyд5t отведено специальное место в главе, посвященной ионитам (стр. 554). Основные схемы и устройства, приведенные в этой главе (коллекторы, насосы, автоматические краны) можно использовать без больших изменений и для распределительной хроматографии. [c.454]

    В простейшем случае подача буферного раствора на колонку осуш,е-ствляется, как и при обычной хроматографии, при помош,и резервуара с постоянной высотой уровня жидкости, причем скорость тока регулируется краном на выходе из колонки. Для ускорения тока буфера можно создать некоторое избыточное давление по способу, показанному на рис. 419, стр. 454. Более целесообразно использовать специальные микронасосы, позволяюш,ие осуш,ествить элюирование с постоянной регулируемой скоростью. Так, например, поршневые насосы, сконструированные в экспериментальных мастерских Чехословацкой Академии наук [67], позволяют регулировать скорость потока в диапазоне от 5 до 500 мл/час (рис 494). Они имеют стеклянные клапаны или клапаны золотникового тйпа (нержа-веюш,ая сталь по тефлону) и снабжены специальным командным устройством, обеспечиваюш,им автоматическую смену буферов и работу коллектора фракций (см. разд. 5.2 и 6). Насос поддерживает строго постоянный ток буфера при давлении несколько атмосфер. [c.554]

    Несмотря на то что каждому из вариантов ФПП соответствуют свои требования и ограничения в плане технического исполнения, принципиальное устройство более или менее неизменно. Прибор состоит из самого ФПП-канала, компонента, создающего поле или градиент, насосной системы для подачи раствора-носителя, соответствующего детектора и записьгаающего устройства, устрсйства для измерения потока и, если необходимо, коллектора фракций. Тевден1щи развития следуют за жидкостной хроматографией приборы для ФПП все больше контролируются компьютером, который также служит для сбора и обработки данных. Как показано на рнс. 5.6-1, чаще используют канал в виде ленты, а не трубчатый. Такой канал вырезается из пластикового или [c.310]

    При хроматографировании используются две колонки с различной селективностью и устройство (коллектор в препаративной хроматографии, вентиль и т. д.) для переноса части нотока в другую колонку". [c.77]

Рис. 10.2, Блок-схема системы ЯМР спектрометр - жидкостной хроматограф 1 - компрессор 2 - ВЭЖХ-компьютер 3 - колонка 4 - инжектор 5 -коллектор фракций 6 - детектор 7 - магнит 8 - ЯМР-спектрометр. Рис. 10.2, <a href="/info/63732">Блок-схема системы</a> ЯМР спектрометр - <a href="/info/8549">жидкостной хроматограф</a> 1 - компрессор 2 - ВЭЖХ-компьютер 3 - колонка 4 - инжектор 5 -<a href="/info/100445">коллектор фракций</a> 6 - детектор 7 - магнит 8 - ЯМР-спектрометр.
    Разделение компонентов смеси в хроматографе осуществляется градиентным методом. Детектор хроматографа подключен к специальному аналого-цифровому модулю при появлении пика, обнаруженного детектором, поток элюента, выходящий из колонки, направляется в коллектор фракций для последующего исследования методом ЯМР. Специальный датчик ЯМР микропроточной конструкции имеет два стандартных устройства ввода пробы. Одно используется при ра- [c.261]

    Распределительная хроматография. В отличие от адсорбционной твердая фаза служит только опорой (основой) для стационарной жидкоп фазы. Один из типов распределительной хроматографии, как и адсорбционная, осуществляется на колонках, в которых в качестве стационарной фазы применяют влажный крахмал или силикагель. Образец растворяют в подходящем растворителе, затем наносят на колонку разделяемые вещества, подвергающиеся многократному распределению между неподвижной стационарной фазой (водный слои) и движущейся фазой органического растворителя, с разной скоростью перемещаются ко дну колонки. Собранные при помощи коллектора фракции пробы, содержащие одно вещество, соединяют для выделения этого вещества в чистом виде. [c.28]

    Коаксиальный ДЭЗ газового хроматографа модели 3700 фирмы Varian (США) работает по методу импульсного питания постоянным током. Конструкция детектора и схема питания приведены на рис. 11.28. В представленной схеме ДЭЗ непосредственно введен в электронную схему обратной связи. На электрод с радиоактивным источником 2 подаются отрицательные импульсы напряжения от регулируемого генератора частоты 7. Образованные в ячейке ДЭЗ с чистым газом-носителем свободные электроны движутся к коллектору навстречу потоку газа- [c.172]

    Детектор по измерению светового рассеяния (СРД) основан на различии давлений паров обычно используемых в жидкостной хроматографии растворителей и анализируемых веществ [63, 64]. Принципиальная схема детектора приведена на рис. 111.29. Элюент на выходе из колонки распыляется в камере 5 при повышенной теш1ературе. В камере испарения 8 растворитель испаряется, а поток частиц нелетут1и -анализируемых веществ рассеивает свет лазерного луча в камере светорассеяния 10, в которой имеется стеклянный стержень 4, расположенный перпендикулярно лучу лазера на расстоянии 2—5 мм от него. Стержень служит в качестве коллектора рассеянного света, через него часть рассеянного света попадает на фотоумножитель-. Показания СРД пропорциональ- [c.283]

    Соединение жидкостной хроматографии и масс спектрометрии было несбыточной мечтой многих исследователей с самого на чала работ по хромато масс спектрометрии С одной стороны, ЖХ незаменима при анализе многих биологических объектов, термически нестабильных и нелетучих соединений, которые не разделяются с помощью газовой хроматографии, с другой сто роны, обычные детекторы для ЖХ не обладают достаточной гибкостью и универсальностью Однако непосредственное соединение ЖХ с МС долгое время не удавалось, так как эти методы сочетаются гораздо труднее и возникающие проблемы на несколько порядков сложнее чем в ГХ—МС В то же время достаточно хорошие результаты получали при раздельном применении обоих методов с независимым отбором элюируемых фракций из ЖХ колонки, выпариванием растворителя и пере носом вещества в систему напуска масс спектрометра В этом случае жидкостной хроматограф и масс спектрометр работают независимо друг от друга в своем оптимальном режиме Мож но использовать любые ЖХ системы с любыми элюентами и специальные методы масс спектрометрии, разработанные для анализа малолетучих и термически нестабильных веществ такие как ПД, лазерная десорбция, ДХИ плазменная десорбция инициируемая продуктами распада i, масс спектрометрия вторичных ионов и др Отбор фракций и испарение раствори теля могут быть автоматизированы, труднее, правда, осуществить автоматический перенос их и ввод в масс спектрометр [44] Однако практически невозможно создать коллектор фракций для очень сложных смесей неизвестного состава таких, как биологические жидкости, природные масла нефтяные фракции и т п Отбор фракций невозможен и в случае быстро элюирующихся пиков, например, на современных колонках для ВЭЖХ с эффективным числом теоретических тарелок до 50000 Непосредственное соединение ЖХ с МС, аналогичное ГХ— МС, обеспечивает значительное сокращение времени анализа, позволяет осуществлять количественный анализ и селективное детектирование выбранных ионов, использовать математические методы обработки данных для разделения неразрешенных пи ков Поэтому поиск удовлетворительных интерфейсов для непосредственного соединения ЖХ и МС начался еще в 1960 х годах [c.33]

    Для того чтобы собрать фракции, разделенные в процессе препаративной газовой хроматографии, нужно применять соответствующие улавливающие устройства. Ряд таких устройств, в том числе автоматических, имеется в продаже. Некоторые из них являются частью хроматографических приборов, а другие могут быть приобретены отдельно как самостоятельные элементы. При этом могут применяться поворотные устройства — коллекторы, которые биохимики используют для сбора фракций таких веществ, как, например, аминокислоты. [c.469]

    Высокочувствительные оптические ячейки самонастраивающиеся капиллярные картриджи высокое давление на концах для капиллярной хроматографии программа СЬетЗГаиоп автоматический коллектор фракций интегрированный КЭ/МС (квадрупольный и ионная ловушка масс-спектрометры) [c.355]


Смотреть страницы где упоминается термин Коллектор для хроматографии: [c.403]    [c.513]    [c.138]    [c.97]    [c.284]    [c.391]    [c.25]    [c.138]    [c.138]    [c.640]   
Лабораторный практикум по промежуточным продуктам и красителям (1965) -- [ c.276 , c.277 ]

Лабораторный практикум по промежуточным продуктам и красителям Издание 2 (1965) -- [ c.276 , c.277 ]




ПОИСК





Смотрите так же термины и статьи:

Коллекторы

Коллекторы белковых фракций при хроматографии

Хроматография коллекторы фракций



© 2024 chem21.info Реклама на сайте