Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вязкость равновесная

    Диаграммы состояния, подобные описанным выше, строятся на основании опытных данных. Первые работы по изучению зависимости между температурой и концентрацией растворов, равновесных с кристаллической фазой, были выполнены около двухсот лет тому назад Ломоносовым и несколько раньше Глаубером. Как в этих, так и в ряде следующих работ состав раствора, равновесного с кристаллами, определялся с помощью химического анализа. Этот метод пригоден лишь в ограниченном числе случаев, так как, с одной стороны, точное разделение кристаллов и жидкой фазы иногда встречает непреодолимые трудности, например при большой вязкости раствора или при высоких температурах. С другой стороны, не всякое соединение достаточно устойчиво, чтобы его можно было выделить в чистом виде, и не для всякого вещества имеются достаточно надежные методы анализа. [c.378]


    Однако увеличение вязкости среды на 4 - 5 десятичных порядков приводит к снижению в 10 - 100 раз. В связи с этим гель-эффект может быть объяснен не только изменением вязкости среды, но и конформацией макромолекулярных радикалов, их равновесной гибкостью (см. гл. 2). [c.234]

    На эффективность разделения компонентов в хроматографическом процессе влияет очень много факторов. Сорбент (твердый или жидкий) должен обладать определенной селективностью. Элюент должен быть инертным по отношению к компонентам и сорбенту, обладать малой вязкостью, обеспечивать высокую чувствительность детектора. При хроматографировании растворов часто применяют комплексообразующие вещества, которые способствуют разделению компонентов (разное вымывание компонентов с сорбента — изменяются константы Генри). Уменьшение скорости элюирования приближает процесс к равновесному и улучшает разделение компонентов. Если с увеличением длины колонки растет степень разделения, то увеличение ее диаметра приводит, как правило, к ухудшению разделения вследствие конвекционного перемешивания разделяемой смеси. [c.182]

    В первые 7—8 час. В последующее время концентрация растет медленнее. В действительности компрессор малой холодильной машины, как правило, работает циклично, и давление в картере сильно изменяется несколько раз в час. Следует учитывать также, что температура трущихся поверхностей выше, чем картера. Поэтому данные о вязкости равновесных растворов показывают лишь характер протекающих процессов. [c.14]

    Жидкие полимеры любой заданной вязкости могут быть получены из равновесных смесей циклического полисилоксана и дисилоксана или другого источника монофункциональных групп. Циклический силоксан может быть одного вида, обычно от тримера до гексамера (В3 — Ве) или смесью циклических полимеров. Источником монофункциональных групп может быть соответствующий дисилоксан (ММ) или короткий линейный полимер с концевыми монофункциональными группами. Средний молекулярный вес и, следовательно, вязкость равновесной жидкости определяются соотношением [c.181]

    Для снятия реологических кривых 6 ( ) (где е — относительная деформация, I — время) разработан ряд приборов [8]. По кривым 8 ( ) определяются независимые характеристики материала предел текучести начальный условно-мгновенный модуль упругости N модуль эластичности равновесный модуль сдвига истинная релаксационная вязкость вязкость эластично( ти М". Все эти характеристики инвариантны и не зависят от типа приборов, величины приложенных напряжений или скорости деформации, если структура материала не разрушена. [c.144]


    Измерение скорости растворения зерен в потоке жидкости. Зерна изготавливают из слаборастворимых в жидкости веществ, чаще всего бензойной кислоты- и р-нафтола. В качестве жидкостей используют воду или водно-глицериновые смеси с повышенной вязкостью. Из-за низкого значения коэффициента диффузии в жидкости равновесное насыщение обычно не достигается, даже при малых расходах жидкости. Это позволяет вести опыты при малых значениях Неэ. [c.143]

    С позиции молекулярной физики свойства газов, жидкостей и твердых тел можно подразделить на две группы равновесные свойства (например, описываемые уравнением состояния, или описываемые коэффициентами поверхностного натяжения и Джоуля - Томсона) и неравновесные (такие, как вязкость, диффузия и теплопроводность). Выражение для всех макросвойств через молекулярные величины и межмолекулярные силы может быть получено из статистической механики, позволяющей также предсказать значения многих физических величин, для которых отсутствуют экспериментальные данные. [c.28]

    Для расчета вязкости и равновесной концентрации применяли формулы Френкеля [27] и Шредера [28] [c.355]

    В случае ограниченного набухания сополимеров, верхний равновесный предел разбавления которых зависит от количества сшивающего агента (О 0,7 + 0,85), ни теоретических предпосылок, ни экспериментальных данных в литературе не имеется. В этой связи возникает необходимость исследования характера зависимости ньютоновской вязкости рассматриваемой системы от степени ее разбавления. [c.319]

    Значение соотношения рУТ. Из рассмотренного ранее ясно, что такие производные энергии, как энтальпия, энтропия и внутренняя энергия, могут быть выражены количественно как функции р, У и Г. В дальнейшем будет показано, что плотность, вязкость, влагосодержание, равновесные соотношения и другие характеристики также можно выразить как функции р, 7 и Г. Во многих находящихся в обращении программах ЭВМ используется соотношение рУТ для расчета как производных, так и физических свойств системы. [c.22]

    Исходя из блочного представления математической модели элемента технологической схемы, описание явлений, характеризующих перенос и распределение субстанции по координатам и по времени и базирующихся на фундаментальных законах гидромеханики многокомпонентных многофазных систем, составляет основу будущей модели. Учет реального распределения температур, концентраций компонентов и связанных с ними свойств, например плотности, вязкости и т. д., по пространственным координатам аппарата и во времени позволяет оценивать степень достижения равновесности тепломассопереноса, химического превращения, т. е. эффективность конкретного аппарата. Описание гидродинамической структуры потоков основано на модельных представлениях о гидродинамической обстановке в аппарате, использующих ряд идеализированных типовых моделей. Аппарат такого представления достаточно развит для однофазных потоков, разработаны и методы идентификации параметров отдельных моделей применительно к реальным условиям протекания процесса. Математическое описание типовых моделей структуры потоков приведено в табл. 2.1. [c.84]

    Предположим теперь, что в активированном комплексе связь между атомами галогена и инертного газа является ван-дер-ваальсо-вой и энергия этой связи аппроксимируется потенциалом Ленарда-Джонса (11.5). Для оценки и Оц атомов галогенов брали значения, полученные из данных о вязкости ближайшего к галогену в таблице Менделеева инертного газа (например, а, ) = а параметры взаимодействия вычисляли по (11.6). Вычисление расстояний /-ДМ в активированном комплексе производили в предположении, что АМ возникает вблизи состояний, соответствующих в этом случае Лдм можно найти из условия де(г)/дг = О, откуда Лдм = 2 /вОо. Исходя из модели жесткого активированного комплекса, примем Лдв всего на 5% большим, чем равновесное в молекуле Аз- Отношение электронных статистических весов переходного и исходного состояний во всех реакциях взято равным 1/6, = 2. Частоты деформационных колебаний активированного комплекса принимали одинаковыми и были вычислены в гармоническом приближении по формуле  [c.121]

    К концу 190-минутного опыта кажущаяся вязкость достигла 6,11-10 П и могла бы достигнуть равновесной вязкости 7,33-10 П, если бы опыт продолжался еще несколько часов. [c.129]

    Все указанные выше показатели существенно влияют на количество поглощенного вещества и, следовательно, на активность адсорбента. Равновесная статическая активность адсорбента уменьшается с повышением температуры, увеличивается с повышением давления и, в известных пределах, с повышением концентрации адсорбируемого вещества. Большое значение при оценке статической активности адсорбента имеет его динамическая активность, определяемая скоростью диффузии частиц адсорбируемого вещества в поры адсорбента. Скорость диффузии зависит от вязкости адсорбируемого продукта или его раствора, природы адсорбируемого вещества и диаметра пор адсорбента. При [c.238]


    Градиент -Рс/ с линейного участка кривой неньютоновского течения часто рассматривают как кажущуюся вязкость . Если слабое сдвиговое усилие стационарно прикладывают к концентрированным эмульсиям, часто оказывается, что равновесное напряжение не устанавливается мгновенно. Вместо этого Р понижается в течение периода времени, обусловленного структурными изменениями, до тех пор, пока не будет достигнуто равновесное значение. Необходимый интервал времени уменьшается, если скорость сдвига увеличивается. Когда сдвиговое усилие устраняют, структура вновь [c.199]

    Когда эту эмульсию подвергали сдвигу в вискозиметре с коаксиальными цилиндрами в течение Ъ мин при скорости 215,46 сек , вязкость снизилась до 10,5 пз. При уменьшении скорости сдвига до 1,33 сек вязкость повысилась до равновесного значения 139 пз примерно за 30 сек (рис. 1У.38), причем наибольший подъем наблюдался в течение первых 10 сек. Что касается свежей эмульсии, то в дальнейших опытах во время старения подобный минимум вязкости достигался при 215,46 сев , но равновесная вязкость снижалась при 1,33 сек со временем старения. Наибольшее снижение равновесной вязкости приходилось па первые 50 ч старения, и это вызвано главным образом быстрой коагуляцией капель диаметром 0,5 мкм. [c.305]

    Эксплуатационные свойства битумных покрытий при положительных температурах характеризуют равновесный модуль сдвига N, определяющий упругопластичные свойства, и истинная релаксационная вязкость IV, определяющая вязкость, ползучесть покрытия. Характеристики, указанные в табл. 6.1, были изучены в преде- [c.145]

    В заключение необходимо хотя бы кратко остановиться на явлениях старения растворов высокомолекулярных веществ. Принято считать, что старение наглядней всего проявляется в спонтанном (самопроизвольном) изменении вязкости равновесных растворов. Ранее, когда к растворам высокомолекулярных веществ подходили с тех же позиций, что и к коллоидным системам, эти изменения вязкости объясняли медленно протекающими явлениями пептизации или, наоборот, агрегирования. В настоящее время, когда установлена гомогенность не слишком концентрированых растворов высокомолекулярных веществ, такое объяснение не может быть признано удовлетворительным. [c.467]

    Однако в 1949 г. Гибсон [14] сообщил, что при тщательно контролируемых 16000-километровых дорожных испытаниях на хшрафинистом масле с высоким индексом вязкости равновесное значение т. j. о. ч. было равно 8 единицам против 2 еди1шц для нафтенового масла с низким индексом вязкости. Несколькими годами позже Гибсон с соавторами [15] сообщили, что изменение углеводородного состава, повидимому, имеет меньшее влияиие на увеличение требуемого октанового числа топлива, чем испаряемость масла. Они также обратили внимание на то, что органические вещества, выделяемые как из топлива, так и из масла, имеют большое значение в образовании нагаров. Это заключение было подтверждено МакНабом, Муди и Хакала [31], которые не обнаружили существенного различия в значении т. у. о. ч. между парафиновым и нафтеновым маслами, имеющими примерно одинаковую испаряемость. [c.278]

    Полученные экспериментальные данные удовлетворительно согласуются с экспериментальными данными Н. Веег(а) и др. [44], выполненными до 140°С при низких давлениях (<1 ата). Л. В. Мишина, Г. 3. Серебряный и Б. Г. Максимов разработали метод расчета вязкости равновесно диссоциирующего азотного тетраксида до давлений 250 ата и температур 1500 °К. [c.16]

    Отпуск способствует переходу мартенсита в более устойчивые в термодинамическом отношении равновесные структурные составляющие перлит, сорбит, тростит с повьштенной вязкостью. [c.201]

    Электрохимия является разделом физической химии, в котором изучаются законы взаимодействия и взаимосвязи химических и электрических явлений. Основным предметом электрохимии являются процессы, протекающие на электродах при прохождении тока через растворы (так называемые электродные процессы). Можно выделить два основных раздела электрохимии термодинамику электродных процессов, охватывающую равновесные состояния систем электрод — раствор, и кинетику электродных процессов, изучающую законы протекания этих процессов во времени. Однако электрохимия изучает не только электродные процессы. В этот раздел физической химии нередко включанэт также теорию электролитов, при этом изучаются не только свойства электролитов, связанные с прохождением тока (электропроводность и др.), но и другие свойства электролитов (вязкость, сольватация, химические равновесия и др.). Теорию электролитов можно также рассматривать как часть общего учелия о растворах, однако в настоящем курсе она включена в раздел электрохимии. [c.383]

    Условие инвариантности комбинаций удля упругих столкновений выполняется автоматически при любых максвелловских функциях fi. fj с произвольными нормировками. Формально можно считать, что смесь нереагирующих компонент является "химически равновесной", если функции распределения имеют максвелловский вид. Хотелось бы отметить, что такой подход имеет физический смысл, поскольку частицы с разной поступательной энергией вносят различный вклад в процессы установления равновесия. Кстати, именно на этом основана модель Ван-Чанга—Уленбека—де Бура, где вводится множественная система квантовых уровней, при которой фактически отсутствуют упругие столкновения и каждое столкновение приводит к изменению уровня. Частицы с неодинаковой кинетической энергией при этом обладают как бы различной химической активностью в процессах неупругого рассеяния. После расчета коэффициентов переноса в такой системе частицы на различных уровнях вновь считаются одинаковыми, и их концентрация находится простым суммированием. Такое объединение упругих и неупругих процессов позволило рассчитать характеристики переноса (сдвиговую и объемную вязкость, время релаксации) многоатомнь1х газов. В этой трактовке условие детального баланса представляет собой частный, вырожденный случай закона действующих масс (с условием,ДЕ= 0). [c.31]

    Дерягиным с сотрудниками показано, что приувеличении концентрации электролита значение равновесной толщины пленок водного раствора олеата натрия между воздушными пузырьками имеет тенденцию к понижению, вплоть до некоторого предела hg 12,5 нм, что дает возможность заключить о наличии на пузырьках полимолекулярных гидратных слоев. Метод сдувания позволил найти зависимость реологических параметров жидкости в пристенном слое от расстояния, а исследование поведения жидкостей в зазоре между плоскопараллельными кварцевыми или стальными дисками привело к выводу о повышенной эффективной вязкости граничных фаз. [c.10]

    Капиллярный кончик для и змерения поверхностного натяжения методом висяш,ей капли удобно изготовить путем припаивания короткого капилляра из стекла пирекс к обыкновенному медицинскому шприцу. Желательно, чтобы стеклянная трубка по всему сечению была равномерной, а кончик должен быть срезан перпендикулярно оси капилляра. Если поверхностное натяжение битума измеряют при относительно низкой температуре, можно вследствие высокой вязкости битума использовать трубки диаметром 4 мм или больше. Аппарат помещают в термостат и каплю получают при температуре, на 5—10 С выше температуры размягчения образца. После достижения равновесного состояния капли ее фотографируют. Снижая температуру и не трогая образец, можно определить температурный коэффициент поверхностного натяжения. Естественно, что метод может применяться только для битумов, не имеющих предела текучести. [c.58]

    Во многих эмульсиях капли окружены слоем эмульгатора, который проявляет при сдвиге вязкоэластичные свойства. Если эта пленка противодействует возрастанию равновесного межфазного натяжения при увеличении площади поверхности, капли ведут себя как твердые сферы и отношение т1ф/т1с не влияет на т]отн (Олдройд, 1953, 1955). С другой стороны, вязкая межфазная пленка не влияет на тип реологического поведения, проявляемого эмульсией, хотя значения параметров могут быть переменными. Влияние вязкости, проявляющейся при сдвиге межфазной пленки (т]р"), и ее поверхностной вязкости (t]s ), которая является двумерным эквивалентом объемной вязкости, на т1о.1.д, как показали измерения в опытах с медленным достижением устойчивого состояния, дается выражением  [c.271]

    В больших количествах органические отложения образ)тотся при хранении нефгей в различных резервуарах. Нефть, являясь дисперсной системой, обладает большой удельной поверхностью раздела фаз и большой свободной энергией, поэтому является термодинамически неравновесной системой и стремится к равновесному состоянию, отвечающему разделению системы на две сплошные фазы с минимальной межфазной поверхностью. В нефтях, для которых характерны полидисперсность твердой фазы и высокая вязкость дисперсионной среды, полное равновесие практически никогда не достигается. Удаленность от равновесного состояния определяет агрегативную неустойчивость (или устойчивость) нефти, т.е. ее способность сохранять свою дисперсность. Афегирование дисперсных частиц, как правило, приводит к повышению афегативной устойчивости нефти, т.к. при этом межфазная поверхность хотя бы частично исчезает и, таким образом, уменьщается свободная энергия системы. Как известно /34/, для уменьшения свободной энергии системы непосредственный поверхностный контакт твердых частиц не обязателен, она может уменьшаться и при сближении частиц на некоторое расстояние, позволяющее им взаимодействовать через слой, разделяющий их среды. Такое положение можно продемонстрировать путем следующих рассуждений. [c.128]

    Ответ. Уменьшение эффективной вязкости полимеров, находящихся в вяз-котекучем состоянии, при повышении температуры происходит тем интенсивнее, чем более жестки макромолекулы. Для реализации элементарного акта течения (сдвига, перескока сегмента из одного равновесного состояния в другое) требуется затратить тем больше энергии, чем больше действующий объем сегмента. Этим определяется близкая к прямой пропорциональности зависимость АЕр =/ ( к), где К" длина сегмента Куна. [c.192]


Смотреть страницы где упоминается термин Вязкость равновесная: [c.96]    [c.24]    [c.125]    [c.46]    [c.466]    [c.338]    [c.222]    [c.427]    [c.201]    [c.316]    [c.108]    [c.199]    [c.728]    [c.369]    [c.444]    [c.10]    [c.200]    [c.245]    [c.146]   
Эмульсии (1972) -- [ c.201 ]

Эмульсии (1972) -- [ c.201 ]




ПОИСК







© 2025 chem21.info Реклама на сайте