Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Переход частиц через границу фаз фазами

    Сумма a -Ь p = 3, что подтверждает правильность опытных данных, т. е. отсутствие больших искажений коэффициентов наклона, вызванных концентрационной поляризацией и другими факторами, не имеющими отношения к кинетике перехода частиц через границу фаз. [c.43]

    Известно, что возникновение вольта-потенциала между двумя металлами в вакууме связано с образованием ионов при электронной эмиссии из металлов. Более того, явление электронной эмиссии обусловливает экспериментальную возможность определения величины вольта-потенциалов. В 1916 г. И. Лангмюр обратил внимание на соответствие между рядом металлов по работам выхода электронов, т. е. рядом Вольта, и электрохимическим рядом напряжения. Действительно, наиболее отрицательные потенциалы наблюдаются у щелочных металлов, имеющих наименьшую работу выхода электронов. Однако это совпадение только качественное, так как при этом не учитывается зависимость потенциалов электродов от концентрации ионов. Следует подчеркнуть, что нельзя измерить разность электрических потенциалов точек, расположенных в различных фазах. Можно измерить только разность потенциалов точек, лежащих в одной фазе, так как переход заряженной частицы через границу фаз сопровождается работой, равной разности химических потенциалов веществ в двух фазах. Разность электрических потенциалов может быть измерена только между точками, лежащими в одной фазе, потому что при этом разность химических потенциалов равна нулю. Так, разность потенциалов цепи всегда измеряют у двух одинаковых металлических проводников. [c.382]


    Частица на поверхности раздела фаз. Переход частицы через границу раздела двух жидких сред является важной составной частью процессов сепарации и очистки одной из фаз от взвеси. Помимо перераспределения межфазных избыточных энергий, здесь важны чисто гидродинамические эффекты сопротивления переходу. [c.92]

    Переход заряженных частиц через границу раздела фаз сопровождается образованием на этой границе двойного электрического слоя. [c.473]

    Переход заряженных частиц через границу раздела фаз сопровождается нарушением баланса электрических зарядов в каждой фазе и приводит к возникновению двойного электрического слоя, которому соответствует скачок потенциала. Рассмотрим границы раздела фаз и возникающие на них скачки потенциалов в электрохимической системе, которая представляет собой правильно разомкнутую цепь а обоих концах такой цепи находится один и тот же металл (рис. 169). В такой цепи следует учесть скачки потенциалов на границах раздела фаз вакуум —М1 (точки 1—2) М1 —Мц (точки [c.469]

    Рассмотрим закономерности электрохимических процессов, при протекании которых нарушается электродное равновесие в результате медленного перехода заряженных частиц через границу между электродом и раствором. В то время как стадии подвода и отвода реагирующих веществ не относятся к специфически электрохимическим стадиям, поскольку они характерны для любого гетерогенного процесса, переход заряженных частиц (электронов или ионов) через границу раздела фаз представляет собой чисто электрохимическое явление. [c.229]

    Одним из основных объектов исследования в электрохимической кинетике является стадия перехода заряженных частиц через границу раздела фаз — стадия разряда-ионизации. Поскольку электрохимические реакции представляют собой гетерогенные процессы, то неотъемлемыми их стадиями служат подвод реагирующих частиц к границе раздела фаз и отвод продуктов реакции. Поэтому изучение закономерностей этих стадий также составляет предмет электрохимической кинетики. Соответствующий раздел кинетики электродных процессов называют диффузионной кинетикой или электрохимической макрокинетикой. Электродные процессы часто включают химические стадии, протекающие в объеме раствора или на поверхности электрода, стадии образования новой фазы, поверхностной диффузии и др. В общем случае закономерности электрохимической реакции [c.6]


    Стадия массопереноса присуща любым гетерогенным процессам. В то же время стадия перехода заряженных частиц (электронов или ионов) через границу электрод — раствор (стадия разряда — ионизации) является специфически электрохимической стадией. В настоящее время доказано, что стадия разряда — ионизации любого электродного процесса протекает с конечной скоростью. Теория, описывающая кинетические закономерности переноса заряженных частиц через границу раздела фаз, называется теорией замедленного разряда. [c.184]

    Переходя к изложению основ теоретической электрохимии, подчеркнем, что в данной книге не рассматриваются общие свойства растворов и методы определения коэффициентов активности, а излагаются только те особенности растворов электролитов, которые обусловлены присутствием заряженных частиц. Далее, условия электрохимического равновесия выводятся обобщением соотношений химической термодинамики на системы, в которых, помимо прочих интенсивных факторов, нужно дополнительно учитывать электрическое поле. Наконец, в качестве основы кинетических закономерностей процесса переноса заряженных частиц через границу раздела фаз используются известные уравнения теории активированного комплекса, в которых анализируется физический смысл энергии активации и концентрации реагирующих веществ в специфических условиях электродной реакции. [c.8]

    На границе раздела металл — раствор в каждой из фаз имеются избыточные, но уравновешивающие друг друга электрические заряды. Последние, распределяясь вблизи поверхности каждой из фаз, образуют электрический конденсатор, и поэтому переменный электрический ток через рассматриваемую границу может проходить благодаря емкостной проводимости, т. е. зарядке, (или разрядке) этого конденсатора (ДЭС). Но в то же время возможен и переход заряженных частиц через границу раздела фаз (разряд ионов или ионизация атомов на электроде), т. е. фарадеевский ток. [c.462]

    Переход заряженных частиц (ионов, электронов) через границу фаз электрод — электролит (через двойной электрический слой) представляет собой чисто электрохимическое явление и может быть выражен через [c.18]

    Применяя закон действия масс (4) к гетерогенной химической реакции перехода частиц (ионов металла) через границу фаз деформируемое твердое тело — окружающая среда и учитывая выражения для активностей иона в металле (26) и электролите (27), с использованием балансового уравнения для зарядов и условия равновесия получим после несложных преобразований для потока реакции растворения [c.29]

    Если самой медленной стадией электрохимического процесса является переход заряженных частиц через границу раздела фаз, то имеет место замедленная стадия разряда — ионизация. [c.81]

    По определению Ка = J и характеризует вероятность перехода молекул через границу раздела фаз, находящихся в термодинамическом равновесии. При хроматографии макромолекул, когда в качестве неподвижной фазы используют пористые сорбенты (см. стр. 179), граница раздела фаз проходит по сечениям входных отверстий пор на поверхности частиц сорбента [98, 111]. [c.66]

    Здесь следует также отметить, что условие равновесия заряженных частиц в двух фазах, выраженное уравнением (124), позволяет установить очень важную связь разности электрических потенциалов между двумя фазами с активностями тех ионов в них, которые способны переходить через границу фаз. Из уравнений (124) и (100) получим [c.53]

    На границе раздела металл — раствор в каждой из фаз имеются избыточные, но уравновешивающие друг друга электрические заряды. Эти заряды, распределяясь вблизи поверхности каждой из фаз, образуют электрический конденсатор, и поэтому переменный электрический ток через эту границу может проходить благодаря емкостной проводимости, т. е. зарядке (или разрядке) этого конденсатора (двойного слоя). Но в то же время возможен и переход заряженных частиц через границу раздела фаз (разряд ионов или ионизация атомов на электроде), т. е. обычная омическая проводимость. Иначе, двойной электрический слой можно представить как электрический конденсатор с утечкой, т. е. конденсатор, который, кроме емкостной проводимости, обладает еще и омической проводимостью через некоторое шунтирующее сопротивление К или Я" (см. рис. 58). [c.169]

    Переход незаряженных частиц из одной фазы (1) в другую (2) обусловлен неравенством химических потенциалов частиц в этих фазах. При этом работа переноса 1 моль соответствует разности химических потенциалов Ц и Если через границу раздела фаз переносятся заряженные частицы, то кроме работы на преодоление сил химического взаимодействия необходимо произвести дополнительную работу против электрических сил. Мерой работы будет служить разность электрохимических потенциалов  [c.468]

    Из ионной природы двойного слоя на поверхности твердого диэлектрика следует необходимость существования в растворе ионных пар, или диполей, способных определенным образом ориентироваться по отношению к границе раздела. Если таких ионных пар, или диполей, на границе раздела фаз не имеется, то двойной электрический слой на поверхности образоваться не. может. При рассмотрении сложного процесса взаимодействия двух фаз на границах твердое тело—жидкость и жидкость—жидкость, связанного с переходом заряженных частиц —ионов через границу раздела и образованием двойного электрического слоя, можно различать отдельные случаи, когда преобладающую роль играют процессы диссоциации поверхностных молекул или адсорбции ионов одного знака заряда. Во всех этих случаях двойные слои имеют обычно диффузный характер и разноименные части двойного слоя располагаются по обе стороны границы раздела. [c.14]


    В то время как стадии подвода и отвода реагирующих веществ не относятся к специфически электрохимическим стадиям, поскольку они характерны для любого гетерогенного процесса, переход заряженных частиц (электронов или ионов) через границу раздела фаз представляет собой чисто электрохимическое явление. [c.243]

    Один из разделов теоретической электрохимии — теория электролитов — занимается изучением как равновесных, так и неравновесных свойств однофазных систем — электролитов. Другой раздел — электрохимическая термодинамика и кинетика — изучает общие условия равновесия на заряженных границах раздела фаз, строение этих границ, механизм и кинетические закономерности перехода заряженных частиц через межфазные границы. [c.6]

    Скачок потенциала на границе металл — раствор электролита является результатом перехода заряженных частиц через поверхность раздела фаз. При таком переходе, помимо химической работы, совершается работа электрическая. Соответственно состояние заряженной фазы в расчете на 1 моль компонента I характеризуется так называемым электрохимическим потенциалом [c.315]

    Скорости электродных процессов рассматриваются обычно с применением тех же приемов, что и скорость химических реакций. Но при этом, однако, нужно иметь в виду сложность протекания большинства электрохимических превращений по сравнению с химическими, а также то, что решающая роль здесь принадлежит плотности тока . Процесс разряда ионов, как известно, происходит на фазовой границе электрод — электролит. Таким образом, электродные реакции являются гетерогенными процессами, кинетика которых определяется многими специфическими затруднениями. Помимо собственно разряда, т. е. перехода ионов из одной фазы (раствора) в другую (газ, металл), процесс обычно включает в себя миграцию, диффузию и конвекцию частиц, совместный разряд ионов примесей, некоторое растворение (коррозию) уже осажденного ранее металла и другие, сопутствующие процессу разряда явления, которые осложняют суммарный эффект. Реальная электрохимическая система не может быть правильно истолкована без учета всех явлений, предшествующих элементарному акту разряда и сопровождающих его. Электродная реакция может быть представлена рядом последовательных стадий, через которые она проходит. Такими стадиями являются  [c.240]

    Эмульсии Пикеринга устойчивы лишь по отношению к коалесценции, когда заряд твердых частиц недостаточен для появления барьера отталкивания против флокуляции их коалесценция достигается добавлением ПАВ, которые не являются стабилизаторами и одновременно сильно уменьшают краевой угол смачивания твердой поверхности одной из жидких фаз. Поэтому твердые частицы переходят с межфазной границы в объем и капли могут объединяться. Вероятно, особый случай структурномеханического барьера, обусловленного капельками микроэмульсий, наблюдала Никитина [232, 233]. Его возникновение связано с турбулентным массообменом через межфазную границу, причем направление переноса вещества определяло тип эмульсий. Разрушение последних проводилось обычными способами. [c.116]

    Протекание коррозионного -процесса связано с переходом частиц через границу фаз, вследствие чего продукты реакции всегда оказываются в иной фазе, нежели исходное вещество. Для количественного определения продуктов это обстоятельство имеет немаловажное значение, поскольку упрощается их отделение от корродирующей основы. Трудности возникают лищь в том случае, когда продукты реакции нерастворимы в данной среде и накапливаются на поверхности испытуемого материала в виде плотно прилегающих слоев. [c.202]

    Однако при соприкосновении металла с раствором ие всегда возможно протекание электрохимических реакций (т. е. переход частиц через границу раздела фаз). Такое состояние возможно, например, на свежей поверхности ртути в растворе фторида калия, з которого удален, кислород и другие окислители. В определенной области потенциалов электрохимические реакции на таком электроде не протекают. Подобные электроды называются идеально поляризуемыми, а область потеицналов, з которой на идеально поляризуемом электроде исключено протекание электрохимических реакций — областью идеальной поляризуемости. Область идеальной поляризуемости иа ртути ограничивается при анодных иотеици.алах реакцией ионизации ртути (2Нд — 2е = Hg ), а при катодных потенциалах — реакцией восстановления ионов калия с образованием амальгамы [К+-г е = К(Н ) ] и составляет примерно 2 В. Для многих электродов, погруженных в раствор, не содержащий собственных нонов, и химически не взаимодействующих с раствором, может быть найдена область, в которой не протекают электрохимические реакции. Например, для медного электрода, погруженного в подкисленный раствор сульфата натрия, при потеит але около 0,1 В происходит растворение меди, а при потенциале примерно —0,5 — выделение водорода таким образом, область идеальной поляризуемости составляет 0,6 В. [c.213]

    Переход заряженных частиц через границу раздела фаз сопровождается нарушением баланса электрических зарядов в каждой фазе и приводит к возникновению двойного электрического слоя, которому соответствует скачок потенциала. Рассмотрим границы раздела фаз и возникающие на них скачки потенциалов в электрохимической системе, которая представляет собой правильно разомкнутую цепь а обоих концах такой цепи находится один и тот же металл (рис. 169). В такой цепи следует учесть скачки потенциалов на границах раздела фаз вакуум —Mi (точки 1—2) Mi —Мц (точки 3—4) Мц —раствор L (точки 5-—б) раствор L —Mi (точки 7—8) Mi —вакуум (точки 9—10), где М —металл. Потенциал х. отвечающий работе переноса элементарного положительного заряда из глубины фазы в точку в вакууме, расположенную в непосредственной близости к поверхности фазы, называется поверхностным. В рассматриваемой. цепи поверхностные потенциалы возникают между точками / и 2, а также 9 и 10. Разность внутренних потенциалов соседних фаз называется гальвани-пот нциалом. В цепи, представленной на рис. 169, гальвани-потенциалы возникают на границах фаз точки 3—4-, точки 5—6 точки 7—S. Э. д. с. этой цепи представляет собой сумму скачков потенциалов  [c.469]

    Одним из основных объектов исследований в электрохимической кинетике является стадия перехода заряженных частиц через границу раздела фаз — стадия разряда — ионизации. Поскольку электрохимические реакции представляют собой гетерогенные процессы, то неотъ- [c.6]

    Э. п. гетерогенны и поэтому, как правило, состоят из неск. последоват. стадий. Осн. из них — подвод реагирующих частиц к пов-сти электрода, вхождение их в двойной электрич. слой, непосредств. переход заряж. частиц через границу раздела фаз (стадия разряда — ионизации) и отвод продуктов р-ции от пов-сти электрода. Кроме того, в ходе Э. п. возможны гомог. или гетерог. хим. р-ции, как предшествующие стадии разряда — ионизации, так и следующие за ней, а также разл. стадии, связанные с образованием новой фазы (см. Электрокристаллизация). Подвод реагирующих в-в к пов-сти электрода и отвод их в объем р-ра (стадии массопереноса) м. б. обусловлены диффузией, миграцией ионов в электрич. поле и конвекцией. Наиб, значение имеют стадия разряда — ионизации и диффуз. механизм массопереноса. Скорость Э. п. определяется наиб, медленной из последоват. стадий (т. н. лимитирующей). Исследование механизма и кинетич. закономерностей Э. п.— объект изучения электрохимической кинетики. [c.697]

    Это отставание обусловлено в значительной мере теми экспериментальными трудностями исследования процессов разряда-ионизации металлов, которые связаны с некоторым специфическими особенностями этих процессов. Во-первых,, реакции разряда-ионизации металлов сопровождаются переходом реагирующих частиц металла из одной фазы в другую, в отличие от окислительно-восстановительных реакций, при которых в переносе заряда через границу фаз участвуют только электроны. В случае твердых металлических электродов эта особенность может приводить к трудноконтролируе- мым изменениям истинной величины поверхности, ее активности и степени неоднородности. Во-вторых, для большинства металлов скорость собственно электрохимической стадии настолько высока, что даже при использовании современных нестационарных методов удается измерять с достаточной сте  [c.25]

    Электродные реакции гетерогенны и сопровождаются переходами заряженных частиц через границу раздела фаз. Они состоят из отдельных элементарных последовательных, а иногда и параллельных электрохимических и химических стадий, включающих помимо переноса зарядов диффузию исходных веществ и продуктов реакции, их возможную адсорбцию иа поверхности электрода, адсорбцию промежуточных частиц, образование новой фазы и т. д. Под механизмом реакции понимают установление определенной последовательности элементарных стадий, которые составляют суммарную электродную реакцию, т. е. реакцию, в которой четко могут быть определены как исходные вещества, так и конечные продукты реакции.. В большинстве случаев ис.ходные вещества, вступающие в реакцию, известны, и тем не менее доказательство участия какого-либо сорта частиц в реакции представляет известную трудность, так как в растворе нли расплаве исходное вещество может находиться в виде частиц различного состава. Част -цы, непосредственно реагирующие на электроде, могут быть в растворе в ничтолсной концентрации, но непрерывно восполняться в результате быстрой химической реакцни. Аналогично и продукты реакции могут вступать в последующее химическое взаимодействие с компонентами раствора или расплава. Наличие элементарной стадии переноса заряда через двойной электрический слой существенно отличает электрохимические реакции от гетерогенных хнм 1ческнх реакц Й, [c.245]

    Установлено, что в протонных диполярных растворителях (БЛ, ДМФ, ДМА, ПК, ТГФ и др.) механизм восстановления оксидов, по-видимому, аналогичен их механизму восстановления в водных щелочных растворах и носит электронно-протонный характер. Согласно этому механизму подвижной частицей, ответственной за массоперенос в твердой фазе, является протон. Процесс восстановления оксида протекает через две основные стадии. Первая — электрохимическая реакция перехода протона через межфазную границу раствор — оксид, в результате которой поверхностный слой оксида превращается в соединение нестехиометрического состава. Вторая стадия, обеспечивающая восстановление более глубоких слоев,— диффузия протона в глубь оксида с одновременным переходом электрона от одного иона металла к другому. В стационарном состоянии вторая стадия является замедленной и ее скорость определяется скоростью диффузии протонов в решетке оксида. В апротонных растворителях в роли подкислителя выступает протон примесной воды или ион лития, который внедряется в кристаллическую решетку оксида. Конечным продуктом восстановления является оксидное соединение восстанавливаемого металла низшей валентности. Так, в хлоридных растворах ДМА процесс восстановления протекает с участием двух электронов, конечным продуктом восстановления является смешанный оксид состава хЖоО - уЖоОг - гЫО. [c.100]


Смотреть страницы где упоминается термин Переход частиц через границу фаз фазами: [c.145]    [c.145]    [c.3]    [c.287]    [c.174]    [c.39]    [c.8]   
Кинетика образования новой фазы (1986) -- [ c.70 , c.74 ]




ПОИСК







© 2025 chem21.info Реклама на сайте