Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Золото, восстановление водородо

    Восстановление. Классический пример этого метода — получение золя золота восстановлением золотохлористоводородной кислоты. В качестве восстановителя можно применять пероксид водорода (метод Зигмонди)  [c.15]

    Методы восстановления. В качестве примера рассмотрим реакцию получения золя золота восстановлением перекисью водорода или формалином  [c.304]


    С увеличением увеличивается содержание кобальта в сплаве от б до 54% (при к = 0,1 и 0,5 А/дм ), но изменяется т . Пирофосфат калия способствует уменьшению катодной поляризации и увеличению содержания золота в покрытии (от 82 до 92% соответственно при 30 и 200 г/л). Количество тока, идущее на восстановление водорода, значительно уменьшается (от 75 до 55%). [c.201]

    В то время как медноникелевые сплавы исследовались довольно подробно, работ, в которых бы описывались каталитические свойства сплавов никеля с серебром или золотом, чрезвычайно мало. В работе [295] наряду с медноникелевыми сплавами изучались также золото-никелевые катализаторы, которые готовились напылением металлов, полученных в результате соосаждения и последующего восстановления водородом. При добавлении даже малых количеств золота (порядка 10— [c.100]

    Восстановление водородом. Золото и платиновые металлы восстанавливаются до металлического состояния из растворов их солей молекулярным водородом [51, 52]. Эта реакция а обычных условиях протекает медленно, но скорость ее можно повысить, проводя процесс под давлением (до 100 атм) и при повышенной температуре (50—100°С) в специальной аппаратуре. [c.253]

    В условиях определения индия флуоресцируют золото, олово, ртуть, сурьма и таллий окрашивают бензольный слой без флуоресценции трехвалентное железо и одновалентная медь. Для отделения меди служит соосаждение индия с полуторными окислами посредством аммиака. От остальных мешающих элементов индий отделяют путем предварительной экстракции бутилацетатом из 5 н. бромистоводородной кислоты с последующей реэкстракцией соляной кислотой (2 1). Влияние незначительных количеств мешающих элементов, переходящих в реэкстракт, устраняют при помощи восстановления порошком металлического железа, восстановленного водородом [5, 6, 15]. Для восстановления остатков трехвалентного железа непо- [c.223]

    Наиболее удобным способом защиты является получение коррозионностойких сплавов легированием. Так, например, введение в медь 52,5% золота делает ее коррозионно стойкой при коррозии с кислородной деполяризацией. Введение в сплавы железа хрома повышает их склонность к пассивации (нержавеющие стали). Металлы легче пассивируются в кислых средах, когда в них вводят добавки других металлов сочень низким перенапряжением водорода (Р1,Р(1).При коррозии таких сплавов возрастает скорость катодной реакции восстановления водорода и потенциал коррозии смещается в область пассивного состояния В — С (рис. 73). [c.229]


    Для удаления ртути предварительно прокаливают навеску пробы с восстановленным водородом металлическим железом или раз-.лагают ее щелочным сплавлением. Если содержание ртути до 100 мкг в пробе, то она легко улетучивается в виде хлорида при обработке сернокислого раствора концентрированной хлористоводородной кислотой, одновременно удаляется и селен. Золото выделяется в виде металла при разложении пробы серной кислотой и упаривании до паров серной кислоты, его отфильтровывают вместе с нерастворимым остатком пробы. Железо( II) восстанавливают аскорбиновой кислотой до железа(II). Однако при этом происходит медленный процесс восстановления теллура. Таким образом, экстракцию следует проводить сразу после прибавления аскорбиновой кислоты. [c.270]

    Баются в кварцевых гильзах с серебром и золотом соответственно [4—6]. Остаток в контейнере представляет собой смесь металлического рутения и его двуокиси, что было установлено по весу остатка после восстановления водородом и подтверждено данными рентгенофазового анализа. На примере анализа комплекса рутеноцена с хлорной ртутью было найдено, что для количественного разложения последней необходимо вести сожжение при температуре 700° С. Возможно, что в случае анализа соединений, не содержащих связей галоген — ртуть, температура разложения может быть понижена. [c.300]

    Для определения индия в рудах и продуктах металлургического производства может быть применен также ускоренный вариант метода, не предусматривающий специальных приемов выделения индия. Медь отделяется при осаждении индия аммиаком сурьму, ртуть, золото и остатки меди цементируют на металлическое железо в 2—3 N по серной кислоте растворе, таллий восстанавливают действием аскорбиновой кислоты и железа, восстановленного водородом, в растворе, 15 по серной кислоте. [c.229]

    Позднее Зигмонди синтезировал монодисперсные золи золота с изменяющимися размерами кластера с помощью восстановления солей золота пероксидом водорода и формальдегидом  [c.347]

    Электронообменные иониты можно перевести в восстановленную форму действием дитионита натрия или в окисленную действием пероксида водорода. В восстановленной форме их применяют для удаления кислорода, пероксидов и галогенов из водных и других растворов. Ионы обратимой редокс-системы можно также количественно восстанавливать и затем определять методами окислительно-восстановительного титрования. Другие области использования электронообменных смол выделение из растворов благородных металлов (золота, серебра), [c.252]

    Метод восстановления. Наиболее распространенные химические методы получения коллоидных растворов различных металлов основаны на реакциях восстановления. Ионы, восстанавливаясь, т. е. присоединяя электроны и превращаясь в нейтральные атомы, конденсируются затем в коллоидные частицы. В качестве примера рассмотрим реакцию получения золя золота путем восстановления пероксидом водорода или формалином  [c.286]

    Все соединения азота с окислительным числом +5 являются окислителями. При действии азотной кислоты на металлы в зависимости от разбавления и природы металла образуются продукты восстановления NO2, N0, NgO, N2. NH3, водород Hz не вытесняется. Смесь концентрированных азотной и соляной кислот, называемая царской водкой, настолько сильный окислитель, что окисляет даже такие металлы, как платину, золото  [c.301]

    Концентрированная серная кислота растворяет почти все металлы независимо от положения их в ряду стандартных электродных потенциалов (кроме золота и платины). Водород при этом не выделяется, а получаются продукты восстановления серной кислоты [оксид серы (IV), свободная сера или сероводород], соль и вода. [c.388]

    Чем сильнее разбавлена азотная кислота, тем сильнее идет процесс ее восстановления. Металлы, расположенные в ряду активностей (напряжений) за водородом, восстанавливают концентрированную азотную кислоту до оксида азота (IV), а разбавленную — до оксида азота (II). Более активные металлы (2п, М , Са и др.) восстанавливают азотную кислоту до оксида азота (I) сильно разбавленная кислота восстанавливается ими до аммиака, который с избытком кислоты образует соли аммония. Такие металлы, как золото, платина, иридий, родий, ниобий, тантал, вольфрам, с азотной кислотой не реагируют. Большинство неметаллов восстанавливают азот- [c.132]

    Наряду с показанной на рис. 20.11 возможностью уменьшения перенапряжения при катодном выделении водорода можно также, например добавлением меди в сплавы свинца, уменьшить затрудненность восстановления кислорода. Поскольку при этом достигаются более положительные потенциалы, такие легирующие элементы могут быть весьма эффективными. Действие в таком же направлении оказывает, например платина, несколько менее выраженно действует палладий напротив, золото практически не дает эффекта [43]. [c.399]


    Перенапряжение кислорода играет в анодных реакциях такую же роль, как перенапряжение водорода при восстановлении. Однако выбор анодных материалов с разным перенапряжением кислорода крайне ограничен, поскольку определяющую роль играет коррозионная стойкость материала. Гладкая платина, золото, диоксид свинца и стеклоуглерод- коррозионно стойкие материалы с высоким перенапряжением кислорода. [c.183]

    Перенапряжение выделения кислорода в анодных реакциях играет такую же роль, как и перенапряжение выделения водорода при восстановлении. Выбор анодных материалов с разным перенапряжением выделения кислорода крайне ограничен, поскольку в этом случае определяющую роль играет стойкость электрода к реакциям окисления. Гладкая платина, золото и стеклоуглерод - наиболее стойкие материалы с высоким перенапряжением выделения кислорода. Если электролит содержит комплексообразующие анионы, то благородные металлы легко окисляются и диапазон рабочих потенциалов сужается. Особенно заметно этот эффект проявляется для золота, которое образует устойчивые комплексные [c.81]

    Точным и быстрым методом отделения ртути, удобным при определении ее в рудах и других материалах, является отгонка ртути с последующей конденсацией паров на металлической амальгамирующейся поверхности. Возгоняют ртуть прокаливанием ртутьсодержащих образцов с каким-либо восстановителем. В качестве восстановителя используют железные опилки (железо, восстановленное водородом). Возгоняемая ртуть осаждается на золотой крышке и взвешивается в виде амальгамы золота. [c.63]

    Ход анализа [93]. Навеску пробы 0,5—5 г смешивают в платиновом тигле с 2-кратным количеством порошкообразного железа (железо, восстановленное водородом, или чистые железные опилки) и поверх смеси насыпают ZnO. Тигель помещают на асбестовую пластинку и плотно закрывают взвешенной золотой крышкой, которую сверху охлаждают водой. Дно тигля осто-рожно нагревают так, чтобы оно в течение 10 мин. было слабо-красным, затем температуру повышают до темно-красного его каления. После окончания термического разложения крышку охлаждают, протирают безводным спиртом и взвешивают. Содержание ртути определяют по привесу. Перед следуюпщм определением амальгаму разлагают и ртуть удаляют осторожным прокаливанием крышки. [c.76]

    Рн2о1Ря2 и PAi i/pii, принимают значения 1,3 10 (безразмерная величина) и 1,8-10 Па соответственно. Если равновесные значения отношений больше экспериментальных, при выбранных условиях восстановление возможно. Основываясь на этих данных, образования восстановленных металлических катализаторов можно ожидать для металлов УИ1 группы, а также для меди, серебра, золота, рения, молибдена и вольфрама. Хлориды восстанавливаются легче, чем окислы, но полностью избежать присутствия окислов в процессе приготовления катализаторов никогда не удается. Восстановление водородом других металлов (не названных выше) при условии сохранения целостности катализатора маловероятно. [c.174]

    Размер частиц некоторых типичных катализаторов, содержащих родий, иридий, осмий, рутений и золото, приведен в табл. 4. Общая тепде щия влияния концентрации металла и температуры прокаливания такая л<е, как и для платины. Иридиевые катализаторы с 5—36% 1г, полученные соосаждением гелей гидроокисей алюминия и иридия, имеют несколько больший размер частиц металла после дегидратации и восстановления водородом, чем образцы, полученные при сопоставимых условиях методом пропитки [79]. По данным [80], при получении рутения на у-окпси алюминия пропиткой носителя раствором хлористого рутения дисперсность металлического рутения после восстановления значительно выше (средний размер частиц - 2нм), если хлорнд рутения разлагают в водороде если разложение проводить на воздухе с последующим восстановлением водородом, [c.209]

    Восстановление золота перекисью водорода в щелочной среде относится к одним из наименее применимых методов, поскольку отделение в этой среде невозможно и, кроме того, образуется очень мелкий осадок. Ванино и Зееман [431] отчасти устранили эти трудности, нагрев щелочную реакционную смесь до разложения перекиси водорода и затем подкислив ее соляной кислотой. Хехт и Ламак-Бруннер [447] предложили методику осаждения микроколичеств золота перекисью водорода и т. д., которое проводили в кварцевом тигле, после чего отделяли осадок с помощью воронки. Ивкович и Шола [449] применили подобную методику для осаждения перекисью из растворов содержащих медь и кадмий. По мнению Росслера [450], восстановление перекисью в кислом растворе идет слишком медленно для его ускорения он рекомендует добавлять карбонат лития или калия. [c.85]

    Ряд важных вопросов электрохимического восстановления получил освещение в работах С. А. Фокина, который в начале века подробно исследовал влияние материала катода, температуры и других факторов на восстановление олеиновой, фумаровой, коричной и кротоновой кислот, аллилового спирта, нитробензола, четыреххлористого углерода и других органических веществ. Параллельно с электрохимическим восстановлением Фокин проводил опыты по каталитическому восстановлению водородом тех же самых соединений в растворах или в парах в присутствии золота, серебра, никеля, кобальта и других металлов. Он пришел к выводу, что металлы, обладающие способностью поглощать водород,— хорошие катализаторы и при каталитическом восстановлении водородом, и при электрохимическом гидрировании. По мнению Фокина, при электрохимическом восстановлении реакции протекают интенсивнее даже при комнатной температуре— и это делает метод более универсальным, чем широко известная каталитическая гидрогенизация по Сабатье и Сандерану. [c.11]

    Лишь немногие из металлов второго и третьего переходных периодов получают в промышленном масштабе. Молибден и вольфрам получают обжигом их сульфидных руд до т ехокисей с последующим восстановлением водородом. Платину и палладий получают термическим разложением их соединений, например (МН4)2Р1С1б и Рс1(СЫ)2- Серебро и золото очищают экстракцией в виде цианидных комплексов, которые могут быть восстановлены такими металлами, как А1 и 2п, в щелочных растворах. Ртуть получают путем обжига ее сульфида с образованием Hg и ЗОг- [c.219]

    Некоторые реакции электровосстановления, как например, восстановленио О2 на золоте, перекиси водорода и акриловой кислоты, сопровождаются появлением свободных радикалов, которые могут быть обнаружены по каталитическим эффектам ускорению распада перекиси водорода [55] и инициированию полимеризации [56]. Вопрос о переходе активных групп с электрода в объем раствора требует дальнейшего глубокого исследования. [c.34]

    Такой принцип положен в основу предложенного Зигмонди способа получения монодисперсного золя золота по реакции восстановления НАиСЦ пероксидом водорода или формалином  [c.11]

    В первой группе — медь, серебро, золото. Оксиды серебра и золота прп пагрсванпи в атмосфере водорода могут вызвать взрыв. Поскольку оксиды этих металлов разлагаются при простом нагревании, описанный метод для их получения не используют. Водород, применяемый для восстановления оксидов, в какой-либо специальной очистке не нуждается (ч. II, I). [c.12]

    Помимо кислотной функции, для HNs характерна также о к и с л и т е л ь н.а я. Взаимодействие ее с HI сопревождается выделением Ь и образованием продуктов восстановления азотистоводородной кислоты —N2 и NH3. Смесь HN3 с крепкой НС1 при нагревании растворяет золото и платину, т. е. ведет себя аналогично царской водке. При действии HN3 на металлы происходит образование не только соответствующих азидов, но /I N2 и NH3, тогда как свободный водород не выделяется. По всем. этим реакциям азотистоводородная кислота похожа на азотную. Основной причиной такого сходства является, по-видимому, наличие в молекулах обоих соединений пятивалентного азота. [c.405]

    Азотная кислота является одним из сильнейших окислителей. Ее окислительно-восстановительные свойства обусловлены присутствием в молекуле НЫОз атома азота в высшей степени окисления Ы" " в составе кислотного остатка МОз . Окислительные свойства кислотного остатка N0 значительно сильнее, чем ионов водорода Н +, поэтому азотная кисота взаимодействует практически со всеми металлами, кроме золота Аи и платины Р1, находящимися в конце ряда напряжений. Так как окислителем в НЫОз являются ионы ЫОГ, а не ионы Н +, то при взаимодействии ННОз с металлами практически никогда не выделяется водород. Нитрат-ионы ЫОз при взаимодействии НЫОз с металлами восстанавливаются тем полнее, чем более разбавлена кис-, лота и чем более активен металл. На следующей схеме показано, какие продукты могут образоваться при восстановлении НМОз  [c.389]

    Существуют специфические методы очистки и восстановления полировки на изделиях из золота, в том числе ажурных и изготовленных из тонкой фольги. Так, находит применение электрохимический процесс анодного полирования золотых изделий. Изделия при комнатной температуре погружают в раствор, содержащий 90 г тиомочевины и 10 ш конщтлтрмрованной серной кислоты в 1 л воды, и подключают м аноду через титановые подвески, в каадстве катодов используют листовой титан. При плотности тока 3—5 А/дм обработка длится 3—5 мин. При этом практически все загрязнения удаляются с поверхности сложнопро-филированного изделия. По завершении процесса изделия промывают водой, депассивируют в растворе пероксида водорода, подкисленном серной кислотой, вновь промывают водой и сушат. [c.178]

    Помимо всех рассмотренных способов, для восстановлення нигросоединений могут также применяться каталитические методы. Восстановление нитробензола и его гомологов в парообразной фазе водородом описывается в многочисленных патентах, рекомендующих в качестве катализаторов процесса металлическую медь, закись железа, железо, золото, серебро, никель, платину. В лабораторных условиях удобнее вести процесс восстановления нитросоединения в жидкой фазе. Восстановление может проводиться в эфирном или спиртовом растворе с применением платиновой черни и молекулярного водорода При этом очевидно образуются в качестве промежуточных продуктов восстановления -арилгидроксиламины. Этот метод применим, кроме того, для восстановления одной нитрогруппы в динитросоединениях [c.411]


Смотреть страницы где упоминается термин Золото, восстановление водородо: [c.179]    [c.62]    [c.17]    [c.62]    [c.136]    [c.178]    [c.144]    [c.148]    [c.314]    [c.217]    [c.80]    [c.107]    [c.76]   
Структура металических катализов (1978) -- [ c.179 ]




ПОИСК







© 2024 chem21.info Реклама на сайте