Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дегидратация коллоидные

    Таким образом, чем больше данный ион проявляет способность гидратироваться, тем активнее в его присутствии происходит дегидратация коллоидных частиц и макромолекул ВМС. Это облегчает соединение их между собой и образование структуры. По их действию на скорость застудневания анионы можно расположить в ряд  [c.393]

    Коллоидные частицы большинства белков гидрофильны, т. е. стабилизированы не только наличием зарядов, но и наличием гидратных оболочек. Желатин в растворах гидратирован в, большей степени, чем другие вводимые в опыты белки, поэтому одного лишь снятия заряда (достижением изоэлектрической точки) недостаточно для его коагуляции (см. опыт 272). Спирт энергично связывает воду (см. опыт 38) и дегидратирует коллоидные частицы белков, в частности и желатина. При незначительной величине заряда частиц, лишенных гидратных оболочек, т. е. вблизи изоэлектрической точки, они коагулируют. В сильнокислой или щелочной среде частицы желатина заряжены гораздо сильнее и благодаря этому настолько стабилизированы, что дегидратация спиртом уже не вызывает коагуляции. [c.351]


    Геле- или студнеобразование происходит только в том случае, если к коллоидному раствору или раствору ВМС добавляется небольшое количество электролитов, вызывающих десольватацию (дегидратацию) коллоидных частиц или макромолекул только в некоторых частях, т. е. на концах и краях. Добавление же насыщенных [c.393]

    Действие спирта состоит в дегидратации коллоидных частиц. Эфир, растворяя добавленный спирт, создает с данным коллоидом гидрофобную систему, не давая возможности мицеллам коллоида гидратироваться. [c.365]

    Во-вторых, для образования высокомолекулярных продуктов с высоким процентным содержанием углерода и низким — кислорода и водорода необходимы реакции дегидратации, дегидрирования, конденсации, полимеризации и сшивки. Практически во всех этих реакциях принимают участие радикалы R. Внутри коллоидных частиц реализуется достаточно высокая концентрация радикалов R благодаря низкой концентрации растворенного в них кислорода и могут происходить реакции, характерные для диффузионной области окисления, в то время как топливо вне коллоидных частиц окисляется в кинетическом режиме. [c.108]

    В результате осуществляется процесс взаимной коагуляции при взаимодействии двух коллоидных систем происходит уменьшение заряда, дегидратация и, наконец, укрупнение частиц.Образующиеся при этом крупные хлопья могут быть легко удалены при помощи фильтрования или отстаивания. [c.178]

    Многим структурированным системам как коагуляционного типа (гелям), так и кристаллизационного типа (студням) свойственно явление самопроизвольного сжатия структурного каркаса, сопровождающегося выделением из структуры некоторой части жидкости. Этот процесс, являющийся частным случаем старения коллоидных систем, называется синерезисом. Синерезис — довольно распространенное явление. Рассмотрим два примера. Черствение хлеба является результатом выделения из студня, каким является хлеб, части воды, при этом структура студня становится более прочной и жесткой. Крахмальный клейстер и кисели при стоянии выделяют воду. Клеящие свойства при этом ухудшаются. В результате синерезиса из минеральных коагулятов легко отделяет жидкость гель кремневой кислоты. Если синерезис в природе протекает быстро, то появляются трещины, которые могут быть заполнены более поздними минералами. Медленное самопроизвольное сжатие геля может приводить к образованию полостей. Чем богаче водой гель, тем больше объем трещин и полостей, возникающих при дегидратации геля. [c.370]


    Кожевникам хорошо известно, как сильно зависит качество подошвенных и мягких кож от оводнения и золения шкур, обеззоливания и мягчения голья, его дубления, жирования эмульсиями, сушки и крашения. В этих операциях преимущественно протекают коллоидно-химические процессы набухание, гидратация, пептизация, адсорбция, дегидратация готовую кожу можно рассматривать как сложную коллоидную систему. Многие лекарственные препараты выпускаются фармацевтической промышленностью в виде коллоидных систем суспензий, высокодисперсных паст, эмульсий, мазей, кремов и т. д. [c.6]

    Коллоид, находящийся в состоянии, близком к изоэлектрическому, еще обладает некоторой устойчивостью после дегидратации, но через некоторое время под влиянием находящихся в растворе электролитов выпадает в осадок (пробирки № 3, 4, 6 и 7). Там же, где коллоидные частицы имеют [c.230]

    При сушке на открытом воздухе осажденная коллоидальная древесина и тонко размолотая древесина давали усадку, образуя впоследствии чрезвычайно крепкие, твердые массы, которые не удавалось превратить в порошок. Для получения коллоидной древесины в виде сухого порошка концентрированный раствор выливали в избыточное количество абсолютного метанола, затем часть воды отгоняли при пониженном давлении в виде азеотропной смеси с алкоголем. Осажденная древесина центрифугировалась, затем при помощи абсолютного метанола переносилась в экстракционную гильзу Сокслета и последовательно экстрагировалась этанолом, диоксаном, бензолом, высоко- и низкокипящим петролейным эфиром. Чтобы ускорить дегидратацию, к спирту прибавлялась окись кальция, а к остальным растворителям натрий. [c.86]

    В первом случае подложки смачиваются смесью спиртовых растворов МОС. Молекулы МОС содержат полярные связи К—Ме, поэтому хорошо смачивают, развивается хемосорбция с образованием поверхностного комплекса МОС — подложка. Полученный слой обрабатывают, распыляя на него дистиллированную воду в дозированном количестве. Введенная в спиртовой раствор вода приводит к образованию геля из коллоидных частиц оксидов с органическим обрамлением, смешанных друг с другом на молекулярном уровне. Последующий общий нагрев до 200° С вызывает начальный термораспад в слое в результате дегидратации и удаление значительной части органических составляющих. [c.76]

    Высаливанием называется реакция осаждения белков из их растворов солями щелочных металлов Na l, (NH4)2S04 и др. Реакция высаливания обусловлена дегидратацией коллоидных частиц белка с одновременной нейтрализацией заряда. При высаливании белок обычно почти не теряет присущих ему физико-химических и биологических свойств. Он вновь растворяется в воде, и обычно при этом не меняются ферментативные, антигенные, иммунные и другие биологические свойства, т. е. остается нативным. [c.37]

    Известно, что растворение является обратимым процессом. В условиях динамического равновесия скорость растворения должна быть равной скорости выделения ОеОг из раствора. В растворах сульфггга магния скорость выделения ОеОг из раствора в осадок может оставаться равной скорости выделения СеОг из насыщенных растворов в чистой воде. Скорость обратного процесса—перехода ОеОг из осадка в раствор, в результате явлений высаливания [5] (дегидратации) коллоидных частиц в осадке, например, по схеме [c.159]

    Исследовалась кинетика растворения и растворимость СеОг в водных растворах сульфата магния. Было установлено, что с увеличением концентрации сульфата магния растворимость ОеОг в этих растворах понижается. Резко сокращается время, необходимое для установления равновесия. Объясняется это явлениями высаливания (дегидратации) коллоидных частиц в осадке, снижающими растиоримость ОеОг в этих растворах. [c.233]

    Студни и гели встречакяся и в природных и в промышленных продуктах. К природным относятся, например, кожа и такие минералы, как опал, агаты к промышленным—твердое мыло и др. Твердение вяжущих веществ (цементов и др.) обычно проходит через стадию образования гелей. Потеря пластичности глинистых отложений в природных условиях, по Н. Я. Денисову, обусловливается дегидратацией коллоидных пленок кремнезема на частицах глины. Студнями являются многие пищевые продукты— простокваша, мармелад, желе, сыр, хлеб, заливное, кисель и др. [c.520]

    Основные научные работы посвящены изучению механизма биохимических процессов. Исследовал кинетику и выяснил механизм спиртового брожения сахаров. Исследовал (1905—1940) ферменты. Отметил увеличение скорости химических реакций в живых организмах под действием ферментов и предложил назвать это явление биокатализом. Совместно с Р. М. Вильштеттером выдвинул (1922) представления, согласно которым частицы ферментов состоят из химически деятельной активной группы и коллоидного носителя. Обнаружил (1928) близость каротина к витамину А по физиологической активности. Установил (1933), что дегидратация всех нуклеотидов дрожжевыми ферментами катализируется козимазой пришел к выводу, что в структуре ферментов следует выделять коферменты и аиоферменты, то есть носители. Внес значительный вклад в изучение биохимии опухолей. [c.591]


    Остановимся на процессах обезвоживания дегидратации) гидрогелей Эти процессы играют важную роль в различного рода явлениях — при формировании ми ера ОВ и горных пород из некоторых коллоидных огложений, при твердении цементных строительных растворов и бетонов, при очерствлении хлеба, при некоторых производственных процессах сушки и пр. [c.525]

    Необходимо полностью уяснить себе, что заш,итное действие (т. е. стабилизация коллоидного раствора) проявляется в двояком виде, а именно в 5лектрическом или ионном и в молекулярном. Совершенно правильным будет сказать, что суспензия частиц углерода может иметь две степени устойчивости одну, образуемую ета-потенциалом, и вторую, являющуюся следствием формирования пленки адсорбированного вещества. В первом случае устойчивость объясняется взаимным отталкиванием частиц друг от друга. Во втором случае это действие имеет пространственный или геометрический характер, так как толстая пленка адсорбированного вещества препятствует такому тесному сближению, которое может выявить флокуляцию. Но для этого требуется, чтобы адсорбированная пленка была достаточно толста и в то же время обладала значительной адгезией в отношении частиц. В водных коллоидных растворах эта адсорбированная пленка может фактически состоять из молекул воды. СЗчень показательный пример — это коллоидный раствор агар-агара, поскольку он способен сохранять свою устойчивость, будучи даже изоэлектрическим. Однако добавление 50 процентов спирта или ацетона приводит к дегидратации частиц и последующей флокуляции. Еще более интенсивно происходит дегидратация в коллоидном растворе частиц агар-агара, если добавить к раствору один процент таннина. В этом случае половина углевода молекулы таннина адсорбируется агар-агаром, в то время как ароматическая часть таннина направляется в сторону воды. В конечном итоге частица становится гидрофобной. Таким образом вода десорбируется, вслед за чем наступает флокуляция. [c.86]

    Явлеиие выделения в осадок растворенного ВМС под действием большой концентрации электролита получило название высаливания. К высаливанию неприменимо правило Шульце—Гарди, поэтому нельзя отождествлять высаливание с явлением обычной электролитной коагуляции. Явление в . с 1ливапия высокомолекулярных веществ в отличие от гидрофобных золей не связано с дзета-потенциалом коллоидных мицелл и заключается в нарушении сольватной (гидратной) связи между макромолекулами полимера и растворителем, т. е., иначе, в понижении растворимости полимера. При введении соли часть молекул растворителя, которая была в сольватной связи с макро.молекулами ВМС, сольватирует молекулы введенной соли. Чем больше будет введено соли, тем большее число молекул растворителя покинет макромолекулы полимера и сольватирует соль. Таким образом, высаливающее действие СОЛИ заключается в ее собственной сольватации (гидратации) за счет десольватации (дегидратации) молекул высокомолекулярных веществ. [c.381]

    Процесс синерезиса имеет важное биологическое значелие. В процессе старения коллоидов происходит их уплотнение, что не может не сказаться на проницаемости клеточных мембран и цито-плаз.мы. Снижение проницаемости может нарушить обмен вещест между клеткой и окружающей средой. Исследования показывают, что при возрастных из.менениях организма происходит уменьшение величины электрического заряда и степени гидратации коллоидных частиц. В результате уменьшается способность коллоидов тканей и органов связывать воду. Более поздние исследования показали, что процессы старения белков связаны не только со структурообразова-нием в растворах высокополимеров, но и с явлениями медленно протекающей денатурации. Именно процессами синерезиса и дегидратации объясняется появление у тканей с увеличением возраста организма новых качеств — большей жесткости и меньшей эластичности. [c.398]

    Процессы дегидратации и гидратации гидрогелей. Остановимся на процессах обезвоживания (дегидратации) гидрогелей. Эти процессы играют важную роль в различного рода явлениях — при формировании Рис. 15. Изотермы дегидратации и минералов И ГОрных ПОрОД ИЗ гидратации геля кремниевых кислот екоторых КОЛЛОИДНЫХ ОТЛОже- [c.22]

    Чаще всего золи коагулируют прибавлением электролита. В этом случае происходит нейтрализация зарядов коллоидных частиц ионами электролита. Причем золи, содержащие положительно заряженные частицы, коагулируют под действием анионов, а золи, содержащие отрицательно заряженные частицы,— под действием катионов. Так, например, частицы золя AsaS осаждаются при добавлении соляной кислоты. Это происходит потому, что ионы Н+ проникают в адсорбционный слой частиц и уменьшают нли полностью нейтрализуют их отрицательный заряд. Чем выше заряд иона, тем больше его коагулирующая способность. Для коагуляции л идрофильных золей (ядро таких золей имеет собственную гидратную оболочку) прибавляют концентрированный раствор электролита (происходит дегидратация частиц и нейтрализация их зарядов). [c.189]

    Свежеобразовапные гидратированные коллоидные пленки обладают гибкостью и упругостью. При высыхании, или дегидратации, они становятся более жесткими. Возвращаясь во влажную обстановку, они вновь гидратируются, набухая подобно гелям. [c.6]

    Коагуляция (от лат. oagulatio — сгущение) — объединение мелких частиц в дисперсных системах в более крупные под влиянием сил сцепления. Ведет к выпадению из коллоидного раствора хлопьевидного осадка или к застудневанию. Коацервация (от лат. oa ervatio — собирание, накапливание) — расслоение коллоидной системы с образованием коллоидных скоплений (коацерватов) в виде двух жидких слоев или капель. К. может возникать в результате частичной дегидратации дисперсной фазы коллоида, являясь начальной стадией коагуляции. По теории А. И. Опарина К. сыграла большую роль на одном из этапов возникновения жизни на Земле. [c.67]

    Электрофлотациопное извлечение частиц при применении нерастворимых электродов наиболее вероятно протекает по двухстадийному механизму на первой стадии флотируемые частицы осаждаются на поверхности газовых пузырьков. Это приводит в дальнейшем к образованию из них стабильных микропузырьков размером 3—10 мкм с оболочкой из удаляемых коллоидных частиц. На второй стадии такие микропузырьки — коллекторы — флотируются более крупными газовыми пузырьками. Осаждению частиц на пузырьках-может способствовать-электрофоретический перенос частиц в приэлектродную зону,, их дегидратация вблизи поверхности электродов и эффективное взаимодействие с пузырьками, зарождающимися на электродах [c.56]

    Продуктами являются кремниевая кислота (H4Si04 см. ниже) и коллоидный гидроксид железа (Ре(ОН)з], слабое основание, которое при дегидратации дает ряд оксидов железа, например [c.85]

    Применение амфотерных катализаторов позволяет значительно увеличить скорость процесса и увеличить степень превращения сырья до 99,5%. Например, по данным фирмы ХалС [63] при использовании в качестве катализатора гидроксида алюмииия время синтеза ди(2-этилгексил)фталата составляет 8 ч по сравнению с 25 ч для процесса без катализатора. В отдельных случаях при производстве диэфирных пластификаторов на амфотерных катализаторах можно отказаться от стадии нейтрализации, получая эфир с кислотным числом менее 0,1 мг КОН/г. В присутствии амфотерных катализаторов повышается эффективность использования реакционного оборудования и отпадает необходимость применения в рецикле непрореагировавшего моиоэфира. Кроме того, появляется возможность многократного использования оборотных спиртов, так как амфотерные катализаторы не катализируют реакцию дегидратации [63, 84]. Однако для выделения твердых амфотерных катализаторов (гидроксида алюминия) приходится осуществлять промежуточную фильтрацию реакционной массы, а в случае применения соединений титана включать в процесс стадию-их разложения до гидроксида титана, который удаляется вместе с сорбентами при фильтрации. Гидроксид титана может выпадать в осадок в гелеобразной или коллоидной форме, которая очень плохо фильтруется и замазывает фильтровальную ткань. Поэтому разложение катализатора следует проводить с большой осторожностью. [c.24]

    По данным некоторых авторов, в растворах электролитов под действием магнитного поля происходит дегидратация ионов и возникают ионные ассоциаты [83—85]. Причем предполагается также переход ионов на более высокую ступень ионизации [86]. Эти явления в свою очередь вызывают уменьшение гидратации и ДП коллоидных и суспендированных частиц, изменение степени взаимного сцепления агрегатов в осадках, облегчают образование зародышей новой фазы [79, 82, 83, 87—90]. Последнее обстоятельство используется для борьбы с пакипеобразованием в котлах. [c.120]

    Другое свойство, с которым следует считаться при применении глины в качестве носителя, это проницаемость по отношению к воде или водным растворам. Установлено, что водопроницаемость глины изменяется как К г , где К — константа и г — средний радиус частиц. Совершенно высушенная глина легко адсорбирует влагу предполагают, что количество адсорбированной воды пропорционально количеству коллоидального материала в глине и обратно пропорционально среднему диаметру ее частиц. Количество адсорбируемой воды колеблется около %. Количества воды, остающейся в порах, зависит от влажности исходной глины гигроскопические пластичные глины могут давать при высыхании сжатие от Ю до 35%. Если скорость испарения воды с поверх-нссти глины больше скорссти подачи ее из внутренних частей, содержащих большое количество воды, и она удерживается ее коллоидными компонентами, то лри сушке глина может растрескиваться. Дегидратация глин, нагретых приблизительно до 225°, приписывается потере гигроскопической влаги. [c.497]

    Построение больших молекул путем добавления звено за звеном может иметь более сложный механизм. Так, для целлюлозы и белков это — дегидратация, в синтезе амидного волокна — реакции конденсации, в процессе Фишера — Тропша — процессы гидрирования СО с замыканием новых С — С-связей, В неорганической химии распространен и другой тип укрупнения, в котором прямо реагируют друг с другом молекулы увеличиваюшегося размера с образованием коллоидных мицелл. Для органической химии такой характер укрупнения менее интеоесен. [c.377]

    Кроме того, рений и его сплавы должны найти применение в качестве гальванических покрытий, как материал для пружин и других деталей, в частности для деталей, работающих на износ, и т. д. Наконец, рений и его аоединения могут быть использованы в качестве катализаторов. Исследования в этом направлении проводились С. Б. Анисимовым, В. М. Крашенинниковой и М. С. Платоновым [111], а впоследствии Платоновым и др. [112]. Было показано, что рений катализирует, например, восстановление окиси углерода до метана, получение серного ангидрида из сернистого, гидрогенизацию этилена, дегидратацию спиртов и т. д. При этом оказалось, что рений более активен как катализатор при применении его в виде коллоида. Коллоидный выооко-дисперсный рений получают восстановлением растворимых соединений рения гидразином и формальдегидом в соляной кислоте, содержащей гуммиарабик, при нагревании [25]. [c.46]


Смотреть страницы где упоминается термин Дегидратация коллоидные: [c.394]    [c.485]    [c.371]    [c.363]    [c.104]    [c.72]    [c.517]    [c.137]   
Структура металических катализов (1978) -- [ c.230 ]




ПОИСК





Смотрите так же термины и статьи:

Дегидратация



© 2025 chem21.info Реклама на сайте