Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Усилители регулирования

    Элементы автоматизации работы барабанного измельчителя. Производительность и качество помола в барабанных измельчителях непрерывного действия зависят от интенсивности подачи материала перегрузка и недогрузка снижают эффективность действия мелющих тел. Наиболее производителен помол при равномерной подаче материала, обеспечивающей заполнение пустот между мелющими телами. Для контроля степени заполнения измельчителя и автоматического регулирования подачи материала измельчителя можно оборудовать электроакустическими или другими регуляторами загрузки. В электроакустическом регуляторе степень заполнения измеряют косвенным методом — по уровню шума мельницы. Датчик уровня шума — микрофон 1 (см. рис. 6.31), установленный у стенки первой камеры многокамерного измельчителя, воспринимает шум, возникающий при его работе измеритель и анализатор частоты 2 передает импульсы блоку усилителя-преобразователя 3, управляющему через командоаппарат работой тарельчатого питателя 4. Последний в зависимости от характера сигналов увеличивает или уменьшает количество материала, подаваемого в первую камеру измельчителя. [c.193]


    Приборы для измерения, записи и регулирования температуры Б комплекте с термопарами называют потенциометрами. На установке применяются потенциометры с электронными ламповыми усилителями. Датчиками для них могут служить термопары трех типов хромель-копелевые, железо-константановые, хромель-алюмелевые. Термопары первых двух типов употребляют обычно для измерения температуры в пределах от О до 600 °С, а хромель-алюмелевые— для измерения более высоких температур (от 600 до 1000 °С), например для измерения температур дымовых газов над перевалами печи. [c.87]

    Ввиду важности количественной характеристики качества псевдоожижения — параметра б, как для исследований структуры кипящего слоя, так и для ее регулирования в производственных условиях, необходимо было автоматизировать процесс ее измерения. Простейшим и наиболее удобным в лабораторных условиях явилась непосредственная подача вырабатываемого емкостным зондом переменного напряжения U (), пропорционального плотности р (/), в интегрирующие блоки аналоговой ЭВМ. Использованная нами схема такой системы, содержащей фильтр верхних частот, набранный на операционных усилителях ЭВМ, приведена в [1 ]. Разработанные в дальнейшем различными группами исследователей [108] электронные схемы с применением аналоговых или цифровых ЭВМ или в виде специально сконструированных приборов, позволяют в настоящее время измерять значения р и б практически непрерывно и использовать этот метод для контроля и автоматического регулирования качества псевдоожижения. [c.88]

    В одном из радиоспектрометров этого класса источником СВЧ мощности является генератор на Я= 1,2-10-2 м- . Модуляция осуществляется на частотах VI ==60 Гц (звуковая) и V2 = 462,5 кГц (ВЧ). Блок-схема этого радиоспектрометра приведена на рис. 8.17. Здесь СВЧ-мощность от генератора (клистрона) через резонансную полость попадает на диодный кристаллический детектор. Система включает в себя устройства /3 и для измерения длины волны, а также для регулирования и контроля мощности, поступающей в резонатор с веществом. Сигнал, возникающий на выходе, поступает в усилитель, настроенный на частоту 462,5 кГц с щириной полосы пропускания 8 кГц, затем — на линейный детектор, усилитель первой частоты модуляции и электронные осциллографы. Первый осциллограф при этом на экране дает изображение модуля производной формы линии. Напряжение временной развертки осциллографов подается от катушек низкочастотной модуляции через фазовращатель. На второй осциллограф сигнал поступает с фазочувствительного детектора, в опорном канале которого установлен фазовращатель частоты модуляции V2, а осциллограмма изображает производную линии резонансного поглощения образца. Приборы этого типа удобны для изучения хода химических реакций. [c.212]


    После перевода пробы в специальный сосуд начинается титрование. В процессе титрования, проводимого вручную, кран бюретки оставляют открытым вплоть до достижения точки эквивалентности, определяемой, например, по изменению окраски индикатора. Вблизи точки эквивалентности титрант добавляют медленнее. Потенциометрическое титрование ведут иначе в этом случае титрант добавляют порциями и часто через определенные промежутки времени и затем оценивают зависимость Д /ДК от объема добавляемого титранта (V ). В серийных анализах, при приблизительно известном значе-иии точки эквивалентности, титрование ведут, приливая раствор титранта сразу в количестве, почти соответствующем точке эквивалентности, что значительно сокращает длительность анализа. Этот факт следует учесть при внедрении техники в процесс титрования. Механизацию указанных процессов и операций, проводимых вручную, можно осуществлять различным образом. При помощи специального устройства можно регулировать подачу раствора титранта из бюретки в простейшем случае устройство состоит из рН-индикатора (например, стеклянного индикаторного электрода), усилителя и реле. При этом появляется возможность от управления процессом (наблюдения за стрелкой прибора и работы с бюреткой вблизи точки эквивалентности) перейти к его регулированию. Для регулирования подачи титранта из бюретки применяют электромагнитные стеклянные клапаны. Запорное устройство может представлять собой также эластичный шланг, закрепленный на носике бюретки, с электромагнитным зажимом в виде клина. Расход титранта замеряют, применяя фотоэлектрическую следящую систему измерения уровня раствора. Приборы такого типа дороги и часто недостаточно надежны в условиях производства. Для дозирования титранта применяют также поршневые бюретки. Поршень, передвигаясь, выдавливает из калиброванной трубки раствор титранта. По перемещению поршня судят о расходе титранта. Поршень приводится в действие синхронным или шаговым мотором, число оборотов которого легко подсчитывается. Поршневые бюретки бывают разных типов с ручным или автоматическим заполнением (автоматическая установка нуля), с микрометрическим устройством или с цифровым указателем. Наиболее эффективно титрование осуществляют следующим образом. Быстрым передвижением поршня до определенного положения приливают титрант в количестве, почти соответствующем точке эквивалентности последующее титрование вблизи точки эквивалентности осуществляют при импульсной или медленной подаче титранта поршнем. Значительно чаще скорость движения поршня регулируют в зависимости от крутизны кривой потенциометрического титрования или от разницы между полученным значением потенциала и предварительно выбранным, соответствующим точке эквивалентности. [c.429]

    Чтобы ограничить утечки жидкости в паре золотник—втулка при значительном давлении жидкости (Ря,ом = 16. .. 20 МПа), стремятся выдержать малый радиальный зазор между сопрягаемыми цилиндрическими поверхностями (Oq = 0,003... 0,008 мм) и принимают перекрытие Лц положительным. Но при этом возникает проблема обеспечения приемлемой зоны нечувствительности электрогидравлического усилителя. Приходится принимать соотношение Xp/ha = 25. .. 50. В соответствии с этим положительное перекрытие Лц должно быть 0,005. .. 0,02 мм. Выполнить все рабочие щели пары золотник—втулка с близкими и малыми величинами /ln можно лишь при высокой точности выполнения линейных размеров между рабочими кромками поясков золотника и окон втулки. Для этого производство электрогидравлических усилителей должно быть специализированным. Следовательно, при проектировании электрогидравлического следящего привода с дроссельным регулированием необходимо в первую очередь рассмотреть возможность использования электрогидравлического усилителя подходящего типоразмера, выпускаемого серийно. [c.186]

    Пример схемы следящего привода с электрическим управлением и дроссельным регулированием скорости показан на рис. 3.23. На ней выделены электрический блок , электромеханический преобразователь 2, двухкаскадный дросселирующий распределитель (с усилителем мощности) 5, объемный двигатель 4 и потенциометрическая обратная связь 5. Электрический блок 1 содержит суммирующий (сравнивающий) усилитель, усилитель напряжения, корректирующий контур и усилитель мощности. Электромеханический преобразователь 2 — обязательный элемент рассматриваемого следящего привода. Известны два основных типа указанных преобразователей электромагнитные и электродинамические [38]. Первые имеют существенно меньшие габаритные размеры и массу, вторые — линейную характеристику (без гистерезиса) при значительном ходе (до 1 мм). В показанном на схеме следящем приводе применен электромагнитный преобразователь. Он преобразовывает электрический сигнал в перемещение Ху якоря. [c.235]

    При создании следящих приводов с электрическим управлением стремятся использовать электрогидравлические усилители мощности, выпускаемые специализированными предприятиями. При изготовлении таких агрегатов возникают значительные трудности. Известны двухкаскадные электрогидравлические усилители с расходом жидкости 10,..200 л/мин и давлением 10...20 МПа [33, 35, 381. Для регулирования больших расходов жидкости (250,..700 л/мин) применяют трехкаскадные электрогидравлические усилители. [c.238]


    У электрогидравлических усилителей при номинальном входном сигнале ориентировочное смещение золотника от среднего положения Хо ном = 0,5.-.1,0 мм. В общую математическую модель следящего привода коэффициенты feg. р. у и fe входят сомножителями. При их перемножении величина Хо.вом сокращается, поэтому выбор ее не влияет на общий передаточный коэффициент fe и добротность feo контура регулирования. [c.239]

    Из большого числа корректирующих цепей [41 в следящих приводах с дроссельным регулированием преимущественно применяются отрицательные обратные связи. В некоторых случаях последняя охватывает только часть следящего привода, например объемный двигатель и усилитель мощности, в других — почти весь. Дополнительный отрицательный сигнал поступает в сравнивающее устройство вместе с сигналом главной обратной связи. [c.248]

    Особенность электрогидравлического следящего привода — наличие в контуре регулирования электрических устройств. Электрические приборы используют в качестве обратной связи, сравнивающего блока, усилителя сигналов и корректирующих устройств. При электрическом управлении следящим приводом указанные приборы функционально необходимы. Вместе с тем известны случаи эффективного применения электрических устройств в следящих приводах и при механическом управляющем воздействии. Благодаря электрическим приборам и машинному управлению скоростью удается существенно повысить точность следящего привода. Известны электрогидравлические следящие приводы мощностью от 1,5 до 200 кВт, которые отрабатывают управляющее воздействие с точностью (0,07. .. 0,1)° при скорости до 70°/с и обеспечивают позиционирование с точностью (0,05. .. 0,07)° при значительной нагрузке (2,4. .. 120) кН-м. Они применяются в наземных и судовых следящих системах, например, в радиолокационных станциях автоматического сопровождения цели и системах слежения оптических и радиотелескопов аа космическими объектами (381. [c.312]

    Приложения теории автоматического регулирования и управления в основном рассмотрены на примерах гидросистем. Однако несколько примеров по динамике процессов, протекающих в гидравлических и пневматических линиях, в струйном усилителе, а также в пневмоприводах дают достаточное представление об общности методов исследования и применимости их для расчетов как гидро-, так и пневмосистем. [c.4]

    При пренебрежимо малой зоне нечувствительности Ua = О, Ki = Кг статическая характеристика усилителя будет такой, как на рис. 6.1, в. Если известно, что при использовании усилителя в системе автоматического регулирования или управления изменения входной величины меньше значений нь , то зона насыщения на статической характеристике не учитывается (рис. 6.1, г). [c.170]

    К уравнениям (6.51)—(6.53) в некоторых случаях может быть сведено описание процесса регулирования скорости выходного звена какого-либо двигателя посредством статического регулятора с усилителем, имеющим нелинейную характеристику. Для такой системы переменная уу будет являться скоростью выходного звена двигателя (частотой вращения вала), переменная 1 — величиной, определяющей перемещение регулирующего органа двигателя (управление двигателем), переменная и — выходным сигналом чувствительного элемента регулятора. [c.200]

    Гидроусилителями называют устройства, увеличивающие мощность управляющих сигналов благодаря использованию энергии, подводимой с потоком жидкости от внешнего источника. В соответствии с этим определением к гидроусилителям часто относят также гидроприводы с дроссельным или объемным регулированием, имеющие механическое управление. Например, гидроприводы, предназначенные для управления рулями самолета или автомобилями, также называют гидроусилителями, Однако в теории автоматического регулирования и управления усилителями принято считать только те устройства, которые применяют, цля соединения маломощных чувствительных элементов или маломощных, преобразуют,их сигналы управления, элементов с более мощными исполнительными элементами. В дальнейшем с учетом именно такого назначения будем использовать приведенное выше понятие гидроусилитель . Согласно схеме (рис. 13.1), гидроусилитель электрогидравлического привода, воспринимая и усиливая сигналы электромеханического преобразователя, обеспечивает управление исполнительным гидродвигателем. [c.370]

    Электрогидравлические следящие приводы о дроссельным регулированием могут различаться по типу исполнительных двигателей, числу ступеней усиления сигналов управления, наличию или отсутствию корректирующих элементов и дополнительных обратных связей. Однако все особенности принципиальных схем и конструктивного исполнения электрогидравлических приводов с дроссельным регулированием не препятствуют построению их структурных схем по общей методике, которая состоит в том, что сначала соединяют вместе структурные схемы электрогидравлического усилителя и исполнительного гидродвигателя, а затем полученная таким образом прямая цепь замыкается обратной связью по положению выходного звена привода. Если для корректирования характеристик привода необходимы дополнительные элементы или дополнительные обратные связи, то они должны быть добавлены к указанным выше основным блокам структурной схемы. При этом могут появиться новые замкнутые контуры внутри основного контура привода, а также могут измениться и параметры отдельных звеньев. [c.381]

    Прямую цепь структурной схемы электрогидравлического привода с дроссельным регулированием получим, соединив последовательно показанную на рис. 13.8 структурную схему электрогидравлического усилителя со структурной схемой нагруженного гидроцилиндра. Передаточные функции для построения последней схемы найдем с помощью уравнений (12.37), (12.39), (12.40) и (12.45). После преобразования этих уравнений по Лапласу при нулевых начальных условиях имеем [c.382]

    При реально возможных соотношениях параметров коэффициент Кн получается значительно меньше единицы, а в предположении идеального золотникового распределителя Кцр — 0) он равен нулю. В связи с этим в дальнейшем будем пренебрегать отрицательной обратной связью с коэффициентом передачи К , тогда структурная схема нагруженного гидроцилиндра сводится к последовательному соединению интегрирующего и колебательного звеньев. Подключив к этим звеньям контур электрогидравлического усилителя, получим структурную схему прямой цепи электрогидравлического привода с дроссельным регулированием (рис. 13.10). Для замыкания структурной схемы привода рассмотрим уравнения обратной связи. Датчиком обратной связи в данном следящем приводе является потенциометр, напряжение о. с на выходе которого при малых относительных перемещениях щетки г/щ и обмотки потенциометра можно принимать [c.383]

Рис. 14.10. Структурная схема электрогидравлического следящего привода с объемным регулированием при идеальном электрогидравлическом усилителе Рис. 14.10. <a href="/info/24140">Структурная схема</a> электрогидравлического следящего привода с <a href="/info/21517">объемным регулированием</a> при идеальном электрогидравлическом усилителе
    В отличие от стационарных сооружений на судах находят наиболее широкое применение защитные установки с регулированием потенциала вместо управляемых вручную, поскольку требуемый защитный ток колеблется в зависимости от окружающей среды и рабочего состояния судна. Более подробные данные о преобразователях систем катодной защиты имеются в разделе 9. Защитные установки для судов должны быть особо прочными и стойкими против воздействия вибраций. Регулирование осуществляется при помощи магнитных усилителей, установочных трансформаторов с серводвигателем или по методу отсечки фазы с применением тиристоров. В отличие от защитных установок для трубопроводов защитные установки для судов могут иметь очень большую постоянную времени регулирования, поскольку требуемый защитный ток изменяется очень медленно. Защитные установки имеют в своем составе также приборы для измерения тока и потенциала на отдельных анодах с наложением тока и измерительные электроды. На крупных защитных установках ван нейшие параметры, кроме того, записываются. [c.364]

    В системах со спонтанной активацией следует применять защитную установку с потенциостатическим регулированием, работающую по схеме, показанной на рис. 20.13. Требуемое заданное напряжение сравнивается в блоке формирования разности Д с напряжением между электродом сравнения и объектом защиты, т. е. с фактическим напряжением /(. Разность ДС/=С/з—У усиливается в усилителе напряжения 51/ до величины Ко-АУ. Эта усиленная разность напряжений управляет силовым усилителем , который подводит необходимый защитный ток Уз через катод системы анодной защиты. При работе защитных установок с регулированием при помощи управляющих дросселей или транзисторов иногда возникают возмущающие колебания в процессе регулирования. Для предотвращения этого можно применить более медленно работающие потенциостаты с механическими исполнительными механизмами. Это особенно целесообразно в системах, активация которых при прекращении подачи защитного тока происходит лишь сравнительно медленно. [c.393]

    Автоматическое регулирование усиления указанного дефектоскопа производится путем подачи положительного напряжения на базу триода второго каскада усилителя. Закон изменения этого напряжения носит пилообразный характер. Амплитуду этого напряжения можно регулировать в определенных пределах, что позволяет эмпирическим путем учитывать различное значение затухания в контролируемых изделиях. Предложенное решение позволяет автоматически выравнивать чувствительность к дефектам, имеющим одинаковую площадь отражающей поверхности в диапазоне толщин стенок изделий из углеродистой и низколегированной стали от 4 до 90 мм с точностью 2 дВ. [c.213]

    Все конденсаторы на ВООВ Рпс. XI.24. Схема усилителя с вибропреобразователем. Усилитель сравнения Усилитель регулирования [c.309]

    Консфуктивно хроматограф ЛХМ-72 выполнен в виде единого устройства, состоящего из четырех отдельных, но соединенных между собой с помощью кабелей и газопроводов блоков (рис. 24.2) блока регулирования температуры 10, блока измерения напряжения 4, блока подготовки газов / и блока термостатов 21. Блок термостатов включает в себя термостаты колонок, ДТП, испаритель, газовый дозатор, регулятор температуры испарителя и нафевателей, предназначенных для подогрева ввода ДИП. Блок подготовки газов обеспечивает регулирование, очистку и стабилизацию потока газа-носителя. В блоке измерения напряжения размещены электрические цепи регулировки моста ДТП и усилителя ДИП, стабилизатор напряжения для их пита- [c.297]

    В последнее время используют программные регуляторы температуры различных типов. Схема одного из таких прецизионных регуляторов блочно-модульного типа приведена на рис. 5. Данный регулятор, позволяющий получать 300 видов программирования режима нагрева с точностью до 0,2°С, состоит из блока программирования, усилителя, блоков пропорционально-интегральнодифференциального регулирования и блока с кремниевыми управляемыми диодами. [c.12]

    Квазиизотермический режим осуществляется на модифицированном дерива-тографе МОМ (рис. И), Исследуемое вещество, помещенное в тигель 3, посредством керамической трубки 4 воздействует своей силой тяжести на плечо весов 5. Печь 2 с помощью регулятора / поднимает температуру с равномерной скоростью до тех пор, пока не начнется изменение массы образца. По мере изменения массы катушка 9, подвен1енная к плечу весов 8, медленно приходит в движение в магнитном поле окружающих ее постоянных магнитов 10. Величина индуцированного в катушке напряжения пропорциональна скорости изменения массы. Если скорость изменения массы образца достигнет значения, соответствующего порогу чувствительности усилителя 5, то последний приводит в действие узел регулирования нагрева /, уменьшая нагрев печи. [c.28]

    При возникновении дугового разряда управляющее устройство полностью снимает напряжение с электродов нл 0,01—0,02 с, а затем оно плавно восстанавливается В течение 0,02—0,03 С до прежнего уровня. Во время Отсутствия тока происходит полная деионизация дугового ка-нг1ла в фильтре время его гашения обычно не превышает 0,01 с. Такое быстродействие схемы достигается благодаря тому, что в силовой цепи магнитный усилитель заменен тиристорами. Схема силовой цепи такого устройства показана на рис. 10.5. Блок силовых тиристоров 3 выполняет функции коммутирующей аппаратуры и плав-нсго регулирования напряжения на входе повышающего трансформатора. Блок силового выпрямителя 6 собран в виде моста на кремниевых диодах. [c.392]

    Для автоматического управления (регулирования) производительностью насоса и соответственно выходной скоростью гидродвигателя используются.гидравлические усилители, отличающиеся высоким быстродействием. В частности, широко распространены двухкаскадные гидроусилители с соплом-заслонкой. Привод заслонки обычно осуществляется с помощью электромеханического преобразователя с поворотным якорем электромагнита, связанным с заслонкой. Преобразование электрического сигнала, управляющего углом поворота заслонки обычно осуществляется с помощью электромеханического преобразователя, принцип действия которого основан на взаимодействии двух магнитных потоков, создаваемых токами, протекающими по обмоткам возбуждения и управления. В случае равенства токов текущих по катушкам управления магнитный поток управления будет равен нулю. При введении же нарушения в величины этих токов возникнет магнитный поток, пропорциональный разности гоков, под дeй твиe.vI которого якорь, а вместе с ним и заслонка поворачиваются. [c.416]

    На рис. 8-2 показан внешний вид электрогидравлического регулятора ЭГР-М на магнитных усилителях, состоящего из двух элементов шкафа электрообрудования и гидромеханической колонки управления. Оба элемента регулятора могут устанавливаться на значительном расстоянии друг от друга (дополнительно о регулировании турбин — см. [21, 23]). [c.162]

    Методика энергетического расчета следящих приводов с дроссельным регулированием, а также расчет и выбор основных параметров дросселирующего распределителя рассмотрены в параграфах 3.3 и 3.4. Линейное математическое описание исполнительного механизма следящего привода приведено в параграфе 3.6. В дополнение к этому рассмотрим расчет и выбор основных параметров сравнивающего механизма, обратной связи и усилителя мощности. Составим линейные математические модели следящих приводов [c.225]

    Для расчета любой системы необходимо прежде всего составить математическое описание протекающих в ней физических процессов, т. е. получить математическую модель системы. При этом в системе могут быть предварительно выделены более простые подсистемы или элементы в соответствии с их функциональным назначением. Например, в системе автоматического регулирования угловой скорости вала двигателя (см. рис. Iv5) можно выделить следующие функциональные элементы чувствительный элемент (центробежный регулятор), усилитель и исполнительный элемент (золотник вместе с гидроцилиндром), обратная связь регулятора, регулируемый объект (двигатель, задвижка, нагружающая двигатель машина). В ряде случаев более целесообразным оказывается разделение системы на составные части не по функциональному признаку элементов, а по физическим процессам. Например, могут быть Е ыделены элементы или группа элементов, в которых протекают гидромеханические процессы, и группа элементов с электрическими процессами. Иногда удобно такие процессы, в свою очередь, представить в виде совокупности процессов, каждый из которых имеет более простое математическое описание. При любом из указанных подходов используют величины двух видов. К первому виду величин относятся зависимые от времени переменные, которые являются своего рода координатами, определяющими в обобщенном смысле этого понятия движение системы. Такими величинами могут быть перемещения деталей, давления и расходы жидкости или газа, сила и напряжение электрического тока, температуры каких-либо тел или сред и др. [c.26]

    В 1932 г. Г, Найкв ст предложил устойчивость ламповых усилителей с обратной связью проверять по частотным характеристикам их разомкнутой цепи. В обобщенном виде частотный критерий устойчивости был введен в теорию автоматического регулирования А. В. Михайловым в 1936 г. Частотные критерии устойчивости нашли широкое применение при расчетах различных систем автоматического регулирования и управления. Эти критерии основаны на известном из теории функций комплексного переменного принципе аргумента, позволяющем для многочлена степени п получить условие расположения на комплексной плоскости всех его п нулей слева от мнимой оси. Геометрическая интерпретация этого условия состоит в следующем. Пусть имеется характеристический многочлен [c.112]

    Пример расчета на ЭВМ переходного процесса. Расчеты переходных процессов в гидро- и пневмосистемах целесообразно выполнять на цифровых ЭВМ. Для этого могут быть использованы приведенные выше математические описания (модели) устройств, из которых состоит исследуемая или проектируемая система. В зависимости от принципиальной схемы гидро- или пневмосистемы и ее конструктивного исполнения математическая модель получается разной степени ело. жности. Наиболее сложной будет модель, если гидравлические и пневматические линии являются длинными и их описание должно учитывать распределенность параметров по пространственным координатам, а уравнения устройств, соединенных этими линиями, представлены нелинейными дифференциальными уравнениями. Модель упрощается в тех с.тучаях, когда допустимо не учитывать распределенность параметров линий или линии вследствие малой длины и незначительного гидравлического сопротивления не могут существенно повлиять на переходный процесс в данной системе. Дополнительное упрощение модели достигается, если часть устройств системы близка к линейным динамическим звеньям. Например, с достаточной для практики точностью математическая модель электрогидравлического следящего привода с дроссельным регулированием часто может быть сведена к модели, состоящей из рассмотренной в параграфе 13.4 линейной модели электрогидрав,лического усилителя и нелинейной модели нагруженного исполнительного гидродаигателя, динамические процессы в котором описаны системой уравнений (12.25)—(12.34). Предварительные расчеты и исследования влияния параметров устройств на качество переходных процессов проще всего выполнять по линейным математическим моделям. Программы расчетов линейных систем можно составлять непосредственно по их структурным схемам, применяя изложенную в параграфе 5.7 методику. [c.387]

    В качестве примера рассмотрим последовательность расчета на ЭВМ переходного процесса, вызванного сту пеичатым изменением сигнала управления элект-рогидравлическим следящим приводом с дроссельным регулированием, у которого электрогидравлический усилитель имеет такую схему, как на рис. 13.5, а связи исполнительного гидроцилиидра с опорой и нагрузкой абсолютно жесткие. Структурная схема этого гидропривода отличается от показанной на рис, 13,11 [c.387]

    На рис. 14.8, а приведена схема электрогидравлического следящего привода с объемным регулированием, в силовую часть которого входят насос 1 с приводом от электродвигателя 2 и гидромотор 3. Вал гидромотора через редуктор соединен с управляемым объектом 4. Вместо гидромотора может быть применен гидроцилиндр. В этом случс1е редуктор не используется. С валом гидромотора соединен также электрический датчик 5 обратной связи, напряжение на выходе которого изменяется пропорционально углу поворота вала гидромотора. Кроме этого датчика может еще устанавливаться электрический датчик угловой скорости вала. Сигнал ОТ датчика обратной связи поступает на вход усилителя 6, к выходу которого подключен электромеханический преобразователь 7, управляющий заслонкой гидравлического усилителя с золотником 8. Этот золотник, в свою очередь, управляет гидроцилинд- [c.434]

    Электронный усилитель служит для получения достаточно мощного электрического сигнала (рассогласования токов) на выходе выявителя. Усилитель собран по дифференциальной схеме на электронной лампе типа двойной триод, питаемой напряжением от тахо-генератора, выпрямленным двумя выпрямителями и 65. С анодов лампы усилителя сигнал регулирования поступает в катушку исполнителя 10. [c.296]

    Принципиальная схема защитной установки с регулированием потенциала, оборудованного магнитными усилителями, показана на рис. 9.4. На потенциометр устанавливается выбранное значение потенциала как заданная величина. С этим значением сопоставляется фактическое напряжение, соответствующее напряжению мем ду управляющим электродом и защищаемым сооружением (см. также рис. 20.13). Разность заданного и фактического напряжений управляет первым каскадом магнитного усилителя, который при помощи второго каскада (кадеч-ной ступени) магнитного усилителя настраивает первичное переменное напряжение для выпрямительного трансформатора. Благодаря этому, если потенциал защищаемого сооружения отклоняется в ту или иную сторону от заданного значения, то напрях<е-ние на выходе защитной установки повышается или понижается и соответственно изменяется и защитный ток. Время настройки составляет около 0,1—0,3 с. Управляющий ток равен примерно 50 мкА. В соответствии с такой нагрузкой управляющий электрод должен быть достаточно низкоомным и мало поляризуемым. [c.225]

Рис. 20.14. Принцип регулирования защитных установок путем контроля ус тановленных значений предельных потенциалов / — резервуар 2 —контроль ный электрод в резервуаре, для которого предусматривается анодная защи та 3 —электрод сравнения 4 — модулятор 5 — усилитель переменного тока б — демодулятор 7 — установленное предельное значение Ug 8 — регулятор 5 — оптический сигнал /О — сигнал иа исполнительный механизм (выполнение переключения) // — звуковой предупредительный сигнал Рис. 20.14. <a href="/info/1502754">Принцип регулирования</a> защитных установок <a href="/info/572740">путем контроля</a> ус <a href="/info/1151690">тановленных</a> <a href="/info/131079">значений предельных</a> потенциалов / — резервуар 2 —контроль ный электрод в резервуаре, для которого предусматривается анодная защи та 3 —<a href="/info/6490">электрод сравнения</a> 4 — модулятор 5 — <a href="/info/836001">усилитель переменного тока</a> б — демодулятор 7 — <a href="/info/978230">установленное предельное</a> значение Ug 8 — регулятор 5 — оптический сигнал /О — сигнал иа <a href="/info/21555">исполнительный механизм</a> (выполнение переключения) // — звуковой предупредительный сигнал

Смотреть страницы где упоминается термин Усилители регулирования: [c.298]    [c.12]    [c.29]    [c.57]    [c.57]    [c.439]    [c.74]    [c.391]    [c.344]    [c.336]    [c.130]   
Определение pH теория и практика (1972) -- [ c.364 ]

Определение рН теория и практика (1968) -- [ c.364 ]




ПОИСК





Смотрите так же термины и статьи:

Усилитель



© 2025 chem21.info Реклама на сайте