Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Обмен ионов органических

    Обмен ионов органических веществ с ионами одновалентных металлов, ионами водорода, хлора и рядом других ионов малого размера протекает с большой избирательностью [ ]. Причем избирательность в ряде случаев для поглощения ионов сложного строения, например при обмене ионов тетрациклина и водорода, приближается к тысяче. Это на первый взгляд поразительное явление совмещается, вероятно, с не менее удивительным фактом — возрастанием, причем весьма значительным, энтропии при сорбции многих ионов органических веществ Ч (табл. 22). [c.197]


    Теория, построенная на основе уравнений (4. 32)—(4. 36), строго говоря, применима только в случае кинетики, контролируемой скоростью самого акта обмена — вариант, который практически не встречается при обмене ионов минеральных солей, но который с большей вероятностью может иметь место при обмене ионов органических веществ (см. главу III). Тем не менее боль- [c.291]

    По данным лабораторных исследований температура фильтруемой через ионит воды почти не влияет на обменную способность неорганических ионитов, но оказывает существенное влияние на обменную способность органических ионитов (синтетических смол). [c.20]

    В ионообменной хроматографии в качестве сорбента используются ионообменные смолы (иониты) — практически нерастворимые в воде и органических растворителях высокомолекулярные соединения, содержащие функциональные группы, способные к обмену ионами. Иониты разделяются на катиониты и аниониты. В катиони-гах ковалентно связанными являются анионные группы (50 ")т. R (СОО")т, а в анионитах — катионные, например (ЫН ) -Поэтому катиониты способны обменивать катионы своих ионогенных групп на катионы растворенных солей или водородные ионы [c.48]

    Обмен ионами между фазами — не единственная причина возникновения двойного электрического слоя и скачка потенциалов на границе раздела фаз. Двойной электрический слой может образоваться в результате преимущественной адсорбции одного знака. Ионы противоположного знака притягиваются к поверхности электростатическими силами. Интересно, что двойной электрический слой адсорбционного происхождения может возникать на границе жидкость — воздух. Обстоятельное изучение этого явления провел А. Н. Фрумкин. Он установил анионы чаще адсорбируются на границе вода — воздух, чем катионы повышение гидратации ионов снижает их адсорбционную способность при адсорбции органических ионов выполняется правило Дюкло — Траубе. [c.82]

    В первую очередь ионный обмен происходит с ионами больших размеров, т. е. ионами органических соединений (правило Траубе)  [c.377]

    Рассмотрим более подробно явление обменной адсорбции на примере с глинами. Глины являются адсорбентами, способными к обмену катионами и анионами. Обменная способность глин обусловлена, главным образом, глинистыми минералами и частью органическими соединениями. Обш,ее количество обменных ионов глины, выраженное в милли-эквивалентах на 100 г породы, называется емкостью поглощения. Главными поглощенными катионами в гли- [c.292]


    Ионообменная хроматография приобрела за последние десятилетия первостепенное значение как метод препаративного разделения и аналитического определения самых различных смесей неорганических и органических соединений. В основе ионообменной хроматографии лежит обратимый стехиометрический обмен ионов, содержащихся в хроматографируемом растворе, на подвижные ионы веществ, называемых ионитами или ионообменниками. Разделение смеси содержащихся в растворе ионов основано на неодинаковой способности их к обмену с ионами ионита. [c.61]

    Обмен ионов, обнаруженный в почвах в 1862 г., вначале казался совершенно необычным, научно непознаваемым явлением. Однако за 125 лет, прошедших с момента этого открытия, он прочно занял свое место в ряду фнзико-химических сорбционных процессов. Создание теории ионообменных процессов, исследование и синтез разнообразных минеральных и органических, природных и синтетических сорбентов, разработка современной аппаратуры и приборов — все это, дополняя друг друга, определило применение ионообменных процессов в научных и технологических целях. [c.5]

    Сорбенты, проявляющие способность к ионному обмену (иониты или ионообменники), представляют собой полимерные вещества, которые содержат функциональные группы, способные при контакте с растворами электролитов к обмену ионов. В зависимости от химической природы полимерной матрицы иониты делятся на два больших класса неорганические и органические. Первые в свою очередь делятся на природные и синтетические. [c.113]

    Полнены способны образовывать комплексы с холестерином и другими стеринами (см. далее разд. 2.8), входящими в состав клеточных мембран. После образования таких комплексов мембрана теряет способность регулировать обмен ионов и низкомолекулярных органических веществ между цитоплазмой клетки и внешней средой. [c.68]

    Здесь необходимо учитывать также возможность взаимодействия адсорбируемых молекул с адсорбентом, которое осложняет диффузию молекул в полостях цеолитов. Так, например, известно, что при ионном обмене больших органических ионов на кинетику процесса большое влияние оказывают стерические факторы, приводящ ие к образованию непроницаемых корок и полному прекращению обмена. Такие процессы, как отмечается в [2], требуют специального анализа и дополнительного изучения распределения ионов (молекул) внутри ионита (адсорбента). Кроме того, необходимо учитывать, как нам кажется, и другую возможность. Величины адсорбции, наблюдаемые в опытах, могут быть равновесными, если принять во внимание возможную зависимость равновесной величины адсорбции от конфигурации адсорбируемых молекул в полости цеолита. С ростом температуры конфигурационное равновесие смеш,ается таким образом, что величина адсорбции растет вплоть до заполнения предельного объема адсорбционного пространства W - Для таких жестких молекул,, как 1,3,5-триэтилбензол или третичный бутилбензол конфигурационные преобразования могут быть затруднены большими энергетическими барьерами. Во всяком сл чае, вопрос заслуживает, по нашему мнению, детального рассмотрения с анализом механизма взаимодействия адсорбата и адсорбента и привлечением для этой цели спектральных методов, позволяющих судить о состоянии адсорбированных молекул, их подвижности и характере взаимодействия с адсорбентом. [c.273]

    На некоторые виды протекающих в растворах превращений, каталитически влияют не только минеральные кислоты и основания или ионы Н+и 0Н , возникающие при электролитической диссоциации органических кислот и оснований, но и недиссоциированные молекулы органических веществ, а также такие продукты диссоциации, как органические катионы оснований и анионы органических кислот. При образовании анилидов из органических кислот и анилина пикриновая кислота действует как сильный катализатор. Полагают, что пикрат анилина, являясь промежуточным продуктом, вступает в обмен с органической кислотой, давая анилид [193, 194]. [c.206]

    Этот вид хроматографии основан на обмене ионами с определенным зарядом (катионами или анионами) между жидкой и твердой фазами. Твердые вещества, способные обменивать некоторые из своих лабильно связанных ионов на ионы раствора, называются ионитами. В зависимости от знака обмениваемых ионов они бывают катионитами и анионитами. Использующиеся в аналитической практике иониты обычно представляют собой нерастворимые в воде органические полимеры, называемые ионообменными смолами, которые содержат ионные группы типа —50з, —МЯз> —СОО и др. Чаще всего применяют сополимеры полистирола и дивинилбензола. В качестве ионитов могут служить и некоторые сложные неорганические вещества. [c.416]


    Ионный обмен в органическом анализе используется для тех же целей, что и в неорганическом анализе. Помимо методов хроматографического разделения смесей известны способы удаления мешающих ионов, определения общей концентрации ионных форм в смесях, концентрирования следовых количеств веществ. [c.489]

    Цеолиты представляют собой группу встречающихся в природе силикатов с очень рыхлыми трехмерными остовами А1—51—О, имеющими отрицательный заряд. В промежутках размещается переменное количество молекул воды и необходимое количество катионов. Структура настолько рыхлая, что легко происходит обмен ионов при пропускании жесткой воды через цеолит (пермутит), содержащий ионы натрия, ионы кальция жесткой коды замещаются на ионы натрия из цеолита, и вода умягчается. При дегидратации цеолитов некоторых типов (природных и искусственных) остов А1—51—0 не сжимается и получающееся твердое тело может быть использовано в качестве молекулярного сита. В структуру цеолита могут входить небольшие молекулы самых различных типов (НаО, ЫНз, газообразные углеводороды и т. д.). Таким путем, подбирая подходящие молекулярные сита, можно разделить смеси газов по размерам молекул. Молекулярные сита являются также очень эффективными осушителями для газов и органических жидкостей. [c.266]

    При обмене ионов органических соединений процесс ионного обмена протекает, как правило, с использовапием лии1ь части ионогенных групп вне зависимости от степени ионизации этих групп и pH среды. Ионы органических соединений, имеющие большие размеры, не могут проникнуть и глубь зерен ионитов из-за малой внутримакромолекулярной нористостп [c.223]

    Широкое распространение получили синтетические иониты на основе органических смол благодаря их хорошей способности поглощать ионы и высокой химической стойкости. Впервые ионообменные смолы были получены в 1934 г. Адамсом и Холмсом, обиа-руживнтми способность к обмену ионов у продуктов конденсации фенолов нли аминов с формальдегидом. Каркас ионообменных смол представляет собой трехмерную се ку углеводородных цепей, на которой закреплены функциональные 1 руппы. Ионообменные смолы — это нерастворимые гсли-полиэлсктролиты с ограниченной способностью к набуханию. [c.165]

    Неорганические и органические материалы, ссюсобпые к обмену ионов, получили название ионитов. Их делят на катиониты (для обмена катионов) и аниониты (для обмена анионов). Разнообразные синтетические ионообменные материалы химической прол(ыш.ленностью выпускаются в виде зернистых порошков, волокон и мембран. [c.302]

    Ионообменная хроматография. Сорбенты — природные или синтетические, неорганические или органические твердые ионоо бменники (иониты) разделение обусловлено различной способностью к обмену ионов хроматографического раствора на эквивалентное количество одноименно заряженных подвижных ионов (противоионов) в составе ионита, оно обусловлено различиями в величинах констант обмена разделяемых ионов анализируемого раствора. [c.8]

    Набухание и перенос растворителя — процессы, сопровождающие обмен ионов на органических ионитах. Чем концентрированнее раствор, контактирующий с ионитом, тем меньше набухание, но более выраженной при этом может оказаться необменная или молекулярная сорбция электролита. Необменную сорбцию электролита рассматривают либо как распределение молекул элек- [c.669]

    Ионообменная хроматография за последние годы стала одним из важнейших методов препаративного разделения и аналитического исследования смесей различных неорганических и органических соединений. Она основана на обратимом стехиометрическом обмене ионов, содержащихся в растворе, на ионы, входящие в состав ионо-обменника. Образование хроматограмм в этом случае происходит вследствие неодинаковой способности к обмену различных ионов хроматографируемого раствора. В ионообменной хроматографии, так же как и в адсорбционной, можно применять фронтальный, вытеснительный, элюентный методы анализа. [c.141]

    Распределение может осуществляться также при обмене ионами между неподвижной и подвижной фазами. Тогда говорят об ионообменной хроматографии. Неподвижная твердая фаза обычно состоит из органического полимерного материала, содержащего группы, способные к обмену ионами. Такой шолимерный материал называют ионитом. Обмен ионами меледу ионитом и раствором, по существу, представляет собой химическую реакцию. Так, например, если ионит обменивает ионы водорода на катионы Ш+, реакцию можно написать в следующем виде  [c.249]

    По мере насьпцения поверхности органическими катионами, блокирующими активные участки, падают гидрофильность глины и ее обменная способность. Подобный же эффект оказывают образующиеся на поверхности глины сернистые соединения. Отмечается влияние количества ионогенных групп в молекуле и величины ее для перекрытия обменных позиций. Так как при этом неполностью компенсируются заряды поверхности, возмо жно накопление около нее избыточных катионов предпочтительно с небольшим радиусом. С другой стороны, известно, что вытеснение малых обменных ионов большими затруднено. Все эти особенности связаны с характером связи между органическими основаниями и глинистой частицей. Высокая прочность ее, видимо, обусловлена помимо обычных молекулярных сил еще и водородными. [c.67]

    По природе сорбента различают адсорбционную, распределительную (абсорбционную) и ионообменную хроматографии. В случае адсорбционной хроматографии сорбция происходит на поверхности твердого тела — адсорбента В распределительной хроматографии компоненты адсорбируются жидкостью, нанесенной на твердый носитель. В ионообменной хроматографии сорбентами являются иониты — практически нерастворимые в воде и органических растворителях высокомолекулярные соединения, содержащие ионогенные группы, обладающие способностью к обмену ионами. Иониты разделяются на катиониты и аниоииты. В катионитах ковалентно связанными являются анионные группы К (50з") , К (СОО")д,, а в анионитах-катион- [c.41]

    Большое значение имеют гели полиэлектролитов в ионообменной хроматографии (стр. 126). В этом случае обратимое набухание и сжатие ионита при обмене ионов регулируют количеством межцепных химических связей например, вводя 6, 10, 17 или 23% дивинил бензол а в поли-сульфостирол (см. рис. 44), можно регулировать набухание смолы и уменьшить объем геля, приходящийся на1 моль сульфогрупп, соответственно от 300 до 100, 70 или 50 мл одновременно изменяются среднее расстояние между ионогенными группами, их электростатическое взаимодействие и активность растворителя. Степень набухания определяет для ряда органических ионов интенсивность ионного взаимодействия и возможность проникновения в сетку геля и, тем самым, избирательность поглощения, что имеет большое значение для хроматографии. Избирательность поглощения обычно характеризуют коэффициентом избирательности [c.211]

    ППК — почвенный поглощаюпшй комплекс — совокупность органических, минеральных и органо-минеральных компонентов почвы, способных к поглощению и обмену ионов [c.329]

    Применение методов обогащения и гидрометаллургии для очистки воды и переработки отходов производства, загрязняющих окружающую среду, приобретает все большее значение. В связи с этим ведутся широкие исследования по ионному обмену, ионной флотации, электрофлотацни ионов и осадков. Последний процесс позволяет в ряде случаев флотировать ионы металлов без введения в пульпу органических реагентов [38, 83, 140]. Эти же методы пригодны для очистии и извлечения ценных компонентов из природных вод шахтных, морских, термальных и др. [c.8]

    В настоящее время известно, что молекулярно-ситовыми свойствами, помимо цеолитов, обладают и другие твердые тела, как кристаллические, так и некристаллические, в том числе угли, продукты пиролиза полимеров, пористые стекла, микропористые кристаллические порошки окиси бериллия, а также слоистые силикаты, модифицированные ионным обменом с органическими катио1Шми. [c.14]

    Ионообмен является одним из видов хемссорбции. Он заключается в обмене ионов между раствором электролита и твердыми веществами —ионитами, нерастворимыми в воде и органических растворителях. Существуют иониты минерального происхождения (aлюмo иликatы, гидрат окиси алюминия, фосфат циркония и др.) и органического (чаще всего — полимеры), природные и синтетические. В промышленности преимуществен1 о применяют синтетические ионообменные смолы (высокомолекулярные соединения) в виде частиц сферической формы. Они состоят из пространственной сетки (матрицы) углеводородных цепей с фиксированными активными (ионогенными) группами, придающими полимеру гидрофильность. Так как цепочки макромолекул сшиты друг с другом в пространственную сетку, то растворитель вызывает набухание ионообменной смолы, степень которого зависит от структуры полимера, типа и концентрации активных групп, а также от состава раствора. При набухании активные группы диссоциируют на подвижные противоионы и фиксированные (связанные с матрицей) неподвижные ионы. [c.633]

    Десорбция алкалоидов спиртовым раствором аммиака (т.е. в щелочной среде) согласно типовой схеме не всегда оптимальна. Это объясняется неустойчивостью некоторых алкалоидов в щелочной среде. При этом наблюдались значительно меньший выход готовых продуктов и ухудшение их качества. Это происходило при разработке ионообменного способа выделения сальсолина и сальсолидина из солянки Рихтера с использованием катионитов КУ-1 и КУ-2 [19]. Выход алкалоидов был невысок, т.к. сальсолин очень быстро разлагался в спиртово-аммиачной среде. Исследования по сорбции и десорбции алкалоидов сальсолина и сальсолидина на других катионитах показали, что десорбция этих алкалоидов из катионитов КУ-1 и КУ-2 растворами аммиака в спиртово-водных смесях и смесях органических растворителей проходит не полностью, и получаемые вещества содержат много продуктов разложения [20]. Эти затруднения были устранены путем десорбции алкалоидов раствором соляной кислотьт в спирто-водной среде при нагревании до 50—бО С. В качестве сорбента был использован полимеризационный гелевый катионит КУ-2-8, так как коэффициент избирательности при обмене иона сальсолина на ион водорода, [c.207]

    При ионообменной хроматографии происходит многократное повторение актов ионного обмена между ионами раствора и ионообменными адсорбентами (ионитами). Ионообменные адсорбенты представляют собой нерастворимые неорганические или органические вещества, содержащие в своей структуре ионогенные группы, способные к обмену ионов. Из неорганических сорбентов наиболее часто применяют окись алюминия, карбонат кальция, окись магния, окись цинка, силикагель, цеолиты, активированный уголь и др. В качестве органических сорбентов широко используют синтетические органические высокомолекулярные соединения, ограниченно набухающие в водных растворах электролитов4 и обладающие ионообменными свойствами. Иониты разделяются на катиониты и аниониты. [c.21]


Библиография для Обмен ионов органических: [c.96]    [c.862]    [c.288]    [c.62]    [c.227]    [c.226]    [c.218]   
Смотреть страницы где упоминается термин Обмен ионов органических: [c.20]    [c.324]    [c.221]    [c.340]    [c.109]    [c.209]    [c.316]    [c.114]    [c.43]    [c.226]   
Электрохимия растворов (1959) -- [ c.691 ]




ПОИСК





Смотрите так же термины и статьи:

Галогены, обмен между галоген-ионами органическими галогензамещенными

Ионный обмен

Ионный обмен в водно-органических средах

Ионный обмен и иониты

Обмен ионов

Органические галогензамещенные, обмен галоген-ионами

Органические реагенты в хроматографии и ионном обмене

Особенности кинетики ионного обмена с участием больших органических ионов

Очистка органических веществ ионным обменом

ПРИМЕНЕНИЕ ИОННОГО ОБМЕНА В ТЕХНОЛОГИИ И АНАЛИЗЕ МИНЕРАЛЬНЫХ И ОРГАНИЧЕСКИХ ВЕЩЕСТВ Мартыненко. Хроматографическое разделение смесей редкоземельных элементов

Самсонов. Термодинамические, кинетические и динамические особенности ионного обмена с участием ионов органических веществ



© 2024 chem21.info Реклама на сайте