Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диссоциация органических соединений на ионы по связи

    Ионно-хромофорная теория индикаторов. Таким образом, согласно дополняющим друг друга ионной и хромофорной теориям в растворах кислотно-основных индикаторов одновременно имеют место и равновесия, обусловливаемые диссоциацией молекул, и равновесия, связанные с внутримолекулярными перегруппировками одних форм индикатора в другие, отличающиеся различным строением. Поэтому обе рассмотренные теории слились в общую ионно-хромофорную теорию индикаторов, согласно которой изменение цвета кислотно-основного индикатора, происходящее вследствие последовательного присоединения органическими соединениями ионов водорода при действии кислот или отнятия ионов водорода при действии щелочей, связано со смещением ионных равновесий индикаторов, сопровождающихся одновременным изменением их структуры. [c.143]


    Цветная реакция при взаимодействии борной кислоты с а-оксиантрахиноиами имеет место, главным образом, вследствие возникновения координационной связи за счет неподелен-ной пары электронов карбонильного атома кислорода, входящего в хромофорную систему сопряженных двойных связей, образование которой, в соответствии с современной теорией цветности органических соединений, всегда сопровождается резким углублением окраски [22]. Следует также заметить, что связь бора с гидроксильным атомом кислорода не является вполне ковалентной кислородный атом несет частичный отрицательный заряд, в результате чего молекула реагента до некоторой степени приближается к ионному состоянию, имеющему место в щелочной среде. Так как переход окрашенных реагентов типа ROH в ионное состояние сопровождается углублением окраски [22], то и поляризация этой связи вызывает определенное углубление окраски в соответствии с тем, в какой мере она проявлена. Объяснение цветной реакции в данном случае с точки зрения гипотезы внутримолекулярной диссоциации внутрикомплексных и циклических солей, развиваемой в последние годы В. И. Кузнецовым [24—26], не представляется возможным более глубокая голубая окраска комплексного соединения хиналпза-рина с бором и рядом других элементов не может быть достигнута за счет внутримолекулярной диссоциации внутрикомплексного соединения по связи бора с гидроксильным атомом кислорода, так как щелочные растворы самого реагента, в которых этот атом кислорода находится в ионном состоянии, обладают менее глубокой фиолетовой окраской. [c.227]

    Иногда процесс протекает только по равновесию (204), минуя стадии (201) — (203). Однако при постоянных значениях pH и концентрации H L, которые создаются в определенном участке хроматографической колонки при применении буферных растворов, степень поглощения ионов металла зависит от константы стойкости Kml комплексного соединения и константы кислотной диссоциации Кн L органического комплексообразующего реагента. Связь между этими величинами наиболее удобно выразить через концентрационную константу равновесия (202) Кр.  [c.243]

    Второй тип активированного комплекса представляет подготовку к распаду на ионы. В этом случае преобладают ионные или полярные связи, т. е. электроны более тесно связаны с какими-либо одними из соединенных атомов. Пределом является диссоциация на ионы, так же как и в растворах. Реально существуют все степени перехода от ковалентной связи к чисто электровалентной, что в различной мере облегчает реакции. В случае органических соединений допускают и ионный механизм реакции в результате деформирующего действия катализатора и поляризации молекул. [c.133]


    В растворах ионная диссоциация органического соединения по связи С—X, как уже указано, может иметь место только в том случае, если связь в достаточной мере полярна и если растворитель характеризуется большой сольватирующей способностью и большой диэлектрической постоянной [1]. В табл. 39 приведены диэлектрические постоянные различных растворителей. [c.256]

    Растворители, характеризующиеся малой диэлектрической постоянной и малой сольватирующей способностью, вызывают лишь переход одной из ковалентных связей в ионную с образованием ионных пар (стр. 59). Некоторые из растворителей, приведенных в табл. 39, практически не могут применяться при исследовании процессов диссоциации органических соединений на ионы, вследствие способности к взаимодействию с последними (например, спирты при исследовании натрийорганических соединений или галогенпроизводных). [c.256]

    ДИССОЦИАЦИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ НА ИОНЫ по СВЯЗИ С—X [c.233]

    ДИССОЦИАЦИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИИ НА ИОНЫ ПО СВЯЗИ С—X [c.255]

    Это объясняется следующим образом. В сложных эфирах радикал спирта связан через кислород с карбонильной группой более часто встречающимися в органических соединениях ковалентными связями это несколько сближает эфиры по свойствам с альдегидами и кетонами. В отличие от этого в свободных кислотах водород карбоксила, способный к диссоциации в виде положительного иона, связан с остатком кислоты электростатическими силами притяжения (электровалентные связи). В анионе диссоциированной кислоты, как теперь установлено, по существу нет истинной карбонильной группы, содержащейся в альдегидах, кетонах и сложных эфирах (с. 214). [c.217]

    Нитрозофенилгидроксиламин можно представить как производное гидроксиламина NH OH, в котором один атом водорода при азоте замещен нитрозогруппой —N0, а другой фенильным радикалом —С Н . Гидро-ксиламин является слабым основанием. Введение радикала —С Н,, как и в других случаях, усиливает кислотные свдйства соединения. Б связи с этим нитрозофенилгидроксиламин является довольно сильной кислотой в сравнении с другими органическими кислотами. Константа диссоциации нитрозофенилгидроксиламина К = 5,3-10Эта кислота неустойчива в свободном виде в кислых растворах, особенно при нагревании, она довольно быстро разлагается, причем частично образуются смолистые продукты, затрудняющие отделение осадков при фильтровании. Поэтому реактив применяют в виде устойчивой аммонийной соли и пользуются свежеприготовленным I профильтрованным раствором последней. При осаждении ионов металлов из кислых растворов стараются не вводить большого избытка реактива. Осаждение ведут без нагревания. [c.102]

    Отсутствие диссоциации на ионы и другие свойства органических соединений давно уже заставляли предполагать, что в органических молекулах имеется связь иного типа, получившая название гомеополярной или ковалентной. Осуществляется она не путем передачи, а путем обобщения электронов. Простейший пример ковалентной связи — образование молекулы водорода из его ато- [c.77]

    Большая стойкость карбонильной группы кислот и чрезвычайно малая способность ее к присоединению по сравнению с боЛее активной карбонильной группой эфиров объясняются следующим образом. В сложных эфирах радикал спирта связан через кис юрод с карбонильной группой более часто встречающимися в органических соединениях ковалентными связями это несколько сближает эфиры по свойствам с альдегидами и кетонами. В отличие от этого в свободных кислогах водород карбоксила, способный к диссоциации в виде положительного иона, связан с остатком кислоты электростатическими силами притяжения (электровалентные связи). Отрицательный заряд остатка кислоты, как теперь установлено, не связан с определенным атомом кислорода (стр. 156—157) и поэтому в анионе диссоциированной кислоты по существу нет истинной карбонильной группы, содержащейся в альдегидах, кетонах и сложных эфирах  [c.160]

    Изучение изотопного обмена позволяет судить и о характере связи. Так, используя радиоактивную серу выявили наличие обмена в связях С = 5 в органических соединениях и отсутствие обмена в связях Р = 5, что было объяснено меньшей поляризуемостью во втором типе связи. Следует оговориться, что употребляя термин прочность связи , нужно ясно представлять себе, какой характер реакции замеш,ения имеется в виду, т. е. происходит ли эта реакция по ионно-молекулярному (гетеролитическому) или атомному (гемолитическому) механизму. Один и тот же заместитель в углеродной цепочке и длина цепи оказывают в таких случаях противоположное влияние на прочность связи . Так, радиоактивный изотоп иода помог изучить обмен в галоидзамещенных насыщенных углеводородах различного строения. Ионный механизм обмена изучался в системах К1 + К1 и водно-спиртовом растворе (90% этилового спирта +10% воды) механизм атомного обмена — в системах Р1 + Ь в циклогексановом растворе, причем атомы иода получались фотохимически, путем диссоциации молекул Ь. Опыты показали, что усложнение скелета алифатического углеводорода или переход от нормального строения к изомерному приводят к резкому уменьшению скорости ионных реакций и к увеличению скорости атомных. Так, если обмен иода в СНд идет целиком по ионному механизму, если, далее в п-иодистом пропиле СНз — СН, — [c.242]


    Из ковалентности связей С-С, С-Н и С-Э и низкой склонности их к диссоциации вытекает низкая реакционная способность органических соединений в отличие от неорганических. Большинство неорганических реакций являются ионными или ион-молекулярными, как, например, реакции осаждения, нейтрализации и комплексообразования  [c.16]

    Очень часто экстракция веществ происходит благодаря химическим реакциям между извлекаемым компонентом и экстрагентом [5, 10, 1491. Так, для успешного извлечения электролитов из водной фазы необходимо, чтобы экстрагент образовывал химическую связь, достаточную для компенсации эффекта гидратации ионов, а часто также и эффекта диссоциации веществ на ионы [5, 149]. Реакции такого рода можно назвать реакциями, обусловливающими экстракцию, или реакциями образования экстрагируемого соединения. Так как для экстракции обычно используют органические растворители с низкой диэлектрической проницаемостью, полученные соединения практически не диссоциируют на ионы в органической фазе. Если до экстракции в каждой из фаз существовало химическое равновесие между различными формами извлекаемого вещества, то образование экстрагируемого соединения и его перенос между фазами вызывают нарушение этого равновесия, а следовательно. приводят к протеканию химических реакций в фазах. Заме- [c.379]

    В высококипящих фракциях нефти наряду с моноблочными молекулами углеводородов и гетеросоединений, содержащими единственное обрамленное алкильными заместителями полпциклическое ядро, появляются молекулы, построенные из нескольких блоков (структурных единиц). Последние соединены между собой ковалентными связями-мостиками, алкильными (в предельном случае — просто связью С—С) или включающими гетероатомы (сульфидными, эфирными), ионными связями (в солях органических кислот и оснований) или донорно-акцепторными связями (в координационных комплексах). Содержание солей и координационных соединений в системе определяется константами равновесия в реакциях их образования и диссоциации и может меняться в зависимости от условий. Концентрации многоблочных молекул в нефти в целом, видимо, должны уменьшаться с ростом числа входящих в их состав структурных единиц. [c.264]

    Ионные реакции чаще других встречаются среди превращений органических соединений. Простейшим примером гетеролитического разрыва ковалентной связи может служить реакция диссоциации карбоновой кислоты. [c.83]

    Особый характер водорода в галогено-водородах. обусловливающий подмеченное Гитторфом сходство их с органическими соединениями, это (переводя на современный язык) — ковалентная связь. При растворении же в воде галогено-водород, гидратируясь, переходит в ионное соединение — соль гидроксония. диссоциация которого на ионы и сообщает раствору электропроводность. [c.236]

    Простые эфиры, так же как и алканы, не содержат химических связей, способных к легкой диссоциации, поэтому к большинству реагентов они инертны. В этой связи их широко используют в качестве растворителей для проведения многих органических реакций, особенно синтеза магнийорганических соединений, комплексных соединений ионов р- и -металлов с рядом органических лигандов. Большинство соединений, растворимых в (С2Н5)20, могуг экстрагироваться (извлекаться) из других растворителей, несмеши-вающихся с эфиром, и после его испарения легко выделяться в твердом виде. Этот прием очень часто применяют в органических синтезах. [c.445]

    Некоторые слабые кислоты (основания) имеют в недиссоциированном и диссоциированном состояниях рагличную окраску. Такие соединения можно применять в качестве индикаторов. Перемена окраски связана с диссоциацией. При отрыве ионов водорода (гидрокси,па) от молекулы в органическом анионе (катионе) происхо.цпт деформация электронной структуры, в результате чего изменяется спектр по , -ления и окраска этого иона. [c.173]

    Приведенные выше рассуждения относятся к водным растворам, но константы диссоциации могут быть измерены и в других растворителях, а также в их смесях с водой. Поскольку наиболее сложные органические соединения слабо растворимы в воде, измерения р (Г для таких веш,еств должны проводиться в системах растворителей, содержаш их суш ественную долю органического растворителя. Однако в силу того, что компоненты кислотноосновного равновесия являются сольватированными продуктами, константы диссоциации, измеренные в разных растворителях, в действительности описывают различные равновесия. Как следствие этого, величины рА и даже различия в величинах рЛГ , найденные в одном растворителе, могут значительно отличаться от соответствуюш их величин, определенных в другом растворителе (влияние растворителя на значение р Г обсуждается на стр. 373). Как уже отмечалось, в настоящем обзоре будут рассмотрены константы диссоциации, измеренные почти исключительно в растворителях, содержаш их воду. Константы диссоциации в других растворителях, особенно в растворителях с низким значением диэлектрической проницаемости, изучались довольно подробно. Однако поскольку в этом случае вместо сольватирован-ных ионов имеются ионные пары, а также потому, что эти растворители не функционируют как основания сравнения, получаемая картина совершенно отлична от той, которая имеет место в воде-растворителе с высокой диэлектрической проницаемостью и сильной склопносгью к образованию водородных связей. Во всяком случае данные по константам диссоциации в неполярных растворителях практически не используются для выяснения строения природных продуктов. [c.368]

    Из этйгЬ вытекает важное следствие, касающееся характера протекания органических реакций. Вследствие неионогенности валентных связей подавляющее большинство углеродистых соединений практически не подвергается электролитической диссоциации. Но реакции обмена между электролитами осуществляются почти мгновенно только потому, что они сводятся к сочетанию в тех или иных комбинациях уже имеющихся ионов. Напротив, химическое взаимодействие между нейтральными молекулами связано с частичным их расщеплением, вследствие чего и происходит несравненно медленнее. С другой стороны, отсутствие резких различий между энергиями образования отдельных связей также способствует медленности и неполноте протекания процессов. В результате необходимое для завершения той или иной реакции между органическими соединениями время измеряется, как правило, не секундами или минутами, а ч а с а м и, причем реакция часто протекает с заметной скоростью лишь при повышенных температурах и обычно не доходит до конца.  [c.537]

    Третьей особенностью сорбции органическргх ионов является большая зависимость ее от pH. Такая зависимость связана как со значительными изменения в диссоциации органических молекул в зависимости от pH и состава жидкой фазы, так и с амфотерностью многих природных органических соединений. Последнее требует при выборе оптимальных условий проведения технологических процессов, изучения констант ионизации различных форм органических ионов и связанного с этим состава фазы раствора и ионита. [c.198]

    В связи со сказанным мы пока используем статистический подход и будем условно характеризовать способность того или иного элемента к комплексообразованию с точки зрения разнообразия типов лигандов с которыми он может давать комплексы. Наиболее способными к комплексообразованию будем считать элементы, которые, будучи в роли центрального атома, могут давать все основные типы комплексов, а именно, устойчивые в водном растворе соединения с кислород-, азот- и серусодержащимн лигандамн, внутрикомплексные соединения и комплексы типа двойных солей. Элементы, которые могут давать только некоторые из перечисленных типов комплексов, будем называть менее типичными комплексообразователями и притом в тем меньшей степени, чем более ограничено число образуемых типов. Рассмотрение всей совокупности имеющегося материала позволяет констатировать, что существуют лиганды, способные сочетаться с очень большим числом элементов и лиганды, которые могут давать устойчивые комплексы только с ограниченным числом элементов, обладающих некоторыми общими признаками. К числу первых лигандов относятся прежде всего молекулы воды и группы ОН и 0 , являющиеся продуктами их ступенчатой диссоциации. Далее, сюда относятся разнообразные органические соединения, содержащие гидроксильные или энольные группы, иногда в сочетании с карбоксильными группами, и притом способные к замыканию циклов. Сюда же близко примыкают ионы щавелевой кислоты. Кроме указанных важнейших кислородсодержащих лигандов, к числу приближающихся к универсальности лигандов относятся также ионы фтора. Что касается ионов более тяжелых галогенов (особенно брома и иода), а также азот- и особенно серусодержащих лигандов, то они дают устойчивые в растворе комплексы только с элементами, которые обладают высокими значениями поляризуемости и поляризующей способности. [c.554]

    Состояние связей в органических соединениях может значительно изменяться при взаимодействии их с различными веществами. Так, если соединение, содержащее галоген, подвергается воздействию солей, способных давать с ионом галогена комплексный анион, состояние соответствующей связи С—X оказывается измененным, вследствие чего диссоциация соединения на ионы облегчается [2]. Такими комплексообразующими солями, употребляемыми в органической химии в качестве катализаторов, являются соли тяжелых металлов Sn l , Sb lg, Hg la и т. п. [2]. Например [c.258]

    В 1937 г. Смис определил потенциалы появления различных ионов, возникающих при диссоциации метана, что явилось первым шагом на пути применения масс-спектрометрии для определения потенциалов ионизации органических соединений. Комбинируя масс-спектрометрические и термохимические данные, Стивенсон (1942) провел расчеты энергий связей. К этим данным стали относиться с большим доверием, после того как в 1943 г. Хиппл и Стивенсон опубликовали значения потенциалов ионизации радикалов метила и этила [97, с. 92]. [c.253]

    Состояние равновесия зависит от основности растворителя и его диэлектрической проницаемости в. Способность растворителя реагировать с растворенным соединением, содержащим протони-зированный водород, с образованием комплекса с водородной связью является одной из форм специфической сольватации (см. гл. VIII). Если же происходит перенос протона от растворенного соединения к молекуле растворителя, то такой растворитель является ионизирующим, т. е. способным расщеплять соединение с образованием противоположно заряженных ионов — имеет место ионизация органического соединения. Если диэлектрическая проницаемость растворителя велика, то происходит разъединение противоположно заряженных ионов и каждый из них оказывается сольватированным раздельно. Таким образом, состояние равновесия, устанавливающееся при диссоциации кислоты Бренстеда, сильно зависит от растворителя. В сильноосновных растворителях (например, жидкий аммиак) разные по силе кислоты диссоциированы нацело и вследствие этого кажутся одинаково сильными — происходит нивелирование растворителем силы кислоты. В очень слабоосновных растворителях, в которых способность соединений к ионизации мала, положение равновесия зависит от основности растворителя. Чем меньше ионизирующая сила растворителя, тем больше различие между константами диссоциации кислот. Такие растворители являются дифференцирующими [11, 1970, т. 39, с. 1631]. [c.96]

    Кроме ТОГО, в твердом состоянии реакции протекают еще при перемещении ионов из одной решетки в другую по дефектам рещетки (разд. 3.9). Так как этот тип реакций встречается относительно редко, он в дальнейщем рассматриваться не будет. Первый класс реакций можно подразделить на реакции, подобные термическому разложению пятиокиси азота, рассмотренному ранее, и реакции замещения в координационных соединениях, в которых координированный лиганд замещается другим лигандом из раствора. В общем случае реакции замещения по своему характеру нуклеофильные, так как замещаемый лиганд уносит электронную пару, ранее образовывавшую а-связь металл—лиганд, а замещающий лиганд приносит пару электронов и поэтому занимает положение с низкой электронной плотностью. По аналогии с органическими соединениями эти процессы обозначаются как SN-процессы (нуклеофильное замещение). Возможны два основных пути протекания реакции в зависимости от того, происходит ли предварительная диссоциация реагирующего комплекса (мономолекулярный процесс SnI) [c.312]

    С увеличением числа симметрично расположенных в гидр-азобензоле негативирующих групп возрастает способность данного соединения к солеобразованию, что непосредственно связано с увеличением константы диссоциации соответствующего соединения. Одновременио растут интенсивность и глубина окраски органического иона, являющиеся следствием увеличения эффекта сопряжения. Кроме того, растворимость солеобразных соединений снижается, а гидролитическая устойчивость повышается. [c.145]

    Повышение энергии ионизирующих электронов приводит к появлению пиков ионов с меньшим, чем М, массовым числом. При этом, естественно, прежде всего рвутся наиболее слабые связи и в области Е = 15—20 эВ масс-спектры органических соединений имеют малолинейчатый вид. При увеличении же энергии ионизации до 30—50 эВ и выше (до 100 эВ) молекуле сообщается настолько большая избыточная энергия, что увеличивается возможность разрыва, вообще говоря, любой ковалентной связи. Однако вероятность такой диссоциации, а следовательно, и общее количество тех или иных осколков зависит, с одной стороны, от прочности соответствующей связи, а с другой стороны, — от резонансной устойчивости продуцируемых при этом ионов ( и радикалов), т. е. возможности делокализовать возникающий положительный заряд (радикал), по возможно большему числу связей. Таким образом, задача предсказания масс-спектра сводится к рассмотрению устойчивости катионов (радикалов), которые могут образоваться при разрыве той или иной связи, на основании общих представлений теоретической органической химии. [c.35]


Смотреть страницы где упоминается термин Диссоциация органических соединений на ионы по связи: [c.174]    [c.76]    [c.325]    [c.290]    [c.14]    [c.24]   
Смотреть главы в:

Курс теоретических основ органической химии издание 2 -> Диссоциация органических соединений на ионы по связи

Курс теоретических основ органической химии -> Диссоциация органических соединений на ионы по связи




ПОИСК





Смотрите так же термины и статьи:

Диссоциация органических

ИОНЫ И ИОННЫЕ СОЕДИНЕНИЯ

Ион ионы связи

Ионная связь

Ионные связи ионные соединения

Связь в органических соединения

Соединение ионов

Соединения ионные

Соединения с ионными связями



© 2025 chem21.info Реклама на сайте