Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки активные центры

    Ранее уже указывалось, что ферменты — это белки, выполняющие роль катализаторов в биологических реакциях. Необходимость таких катализаторов станет очевидной, если вспомнить, что температура тела равна 37°С, а многие органические реакции протекают только при более высоких температурах. Интересно было бы понять, каким образом ферменты осуществляют свои каталитические функции. Установление точного механизма действия ферментов составляет фундаментальную проблему биоорганической химии. Большая часть превращений происходит на поверхности белкового катализатора на участке, обозначаемом как активный центр, где химические превращения следуют основным закономерностям органической и физической химии. При этом одновременно действуют несколько факторов, которые следует ограничить и исследовать отдельно с помощью специальных моделей. Однако, чтобы оценить каталитическое превращение реагента (субстрата) в продукт реакции, необходимо общее представление о таком явлении, как катализ. Субстратом обычно называют химическое вещество, превращение которого катализирует фермент. [c.189]


    Одной из самых ранних моделей взаимодействия фермента с субстратом была модель ключа и замка , иллюстрируемая рис. 25.8. На этом рисунке показано, что форма субстрата точно соответствует определенному участку структуры белка (активному центру), специально приспособленному для взаимодействия с данным субстратом. Когда субстрат связывается с ферментом, происходит катализируемая реакция, после чего продукты реакции отделяются от фермента. Очевидно, такая модель действия фермента имеет много общего с моделями действия гетерогенных катализаторов, обсуждавшимися в разд. 13.7. Различие заключается только в том, что действие фермента более специфично. [c.453]

    Аналогичная ситуация реализуется, по-видимому, также и в ферментативных реакциях. Взаимодействие с субстратом одной функциональной группы белка может быть усилено за счет участия в реакции какой-либо другой, рядом расположенной группы нуклеофильного или электрофильного характера. Так, например, при гидролизе пептидной связи на активном центре карбоксипептидазы А см. схему на стр. 19) нуклеофильная атака молекулой воды усилена за счет общеосновного катализа со стороны карбоксильной группы остатка 01и-270 (а возможно и под действием гидроксильной группы остатка Туг-248). Общекислотный катализ осуществляет, по-видимому, Туг-248. Кроме того, расщепление пептидной связи субстрата может быть существенно облегчено в результате электрофильной атаки атомом 2п. [c.65]

    Наиболее важный класс глобулярных белков образуют биологические катализаторы, ферменты. Они характеризуются каталитическим механизмом, позволяющим им ускорять достижение конкретной реакцией состояния термодинамического равновесия, а также специфичность к субстрату, благодаря которой они способны делать выбор между потенциальными молекулами субстратов, воздействуя на одни из них и отказываясь воздействовать на другие. Участок поверхности фермента, на котором происходит катализ, называется активным центром. Механизм катализа может осуществляться при помощи заряженных групп, доноров и акцепторов электрона или протона, а также при помощи атомов металла в активном центре фермента. Избирательность ферментов обусловливается формой их поверхности и характером взаимодействия с субстратом, например водородной связью, электростатическим взаимодействием или гидрофобным притяжением. Фермент и его субстрат соответствуют друг другу по форме и размеру, как ключ и замок. [c.339]


    В первой части книги кратко рассмотрено строение белков и активных центров ферментов, а также их свойства, важные для катализа. Более подробно изложены физико-химические механизмы катализа и ускорений, наблюдаемых как в ферментативных, так и в модельных процессах. [c.2]

    Активный центр формируется из аминокислотных остатков, зачастую отстоящих далеко друг от друга в пептидной цепи. Собранными в одном месте они оказываются в результате образования вторичной и третичной структуры. Поэтому при денатурации белков активные центры разрушаются и биологическая активность утрачивается. [c.49]

    Наконец, следует отметить, что белки и ферменты, поскольку они являются макромолекулами, не обязательно должны иметь одинаковые структуры. Они могут состоять из ряда родственных, но несколько отличных молекул. В таком случае можно ожидать, что они будут характеризоваться дополнительными параметрами и их изотермы сорбции могут быть похожими на изотерму Фрейндлиха или сложную изотерму Ленгмюра. Такие тонкие различия оказываются часто не выявленными ввиду трудности, связанной с получением ферментов с воспроизводимой и постоянной активностью. Как и в случае твердых катализаторов, это до] некоторой степени объясняется изменением активных центров или их числа. Такие изменения могут обусловливаться наличием небольшого количества сильно сорбированных ионов, которые действуют как яды. [c.565]

    Важную роль при снятии диэлектрических изотерм играет точность диэлектрических измерений. Так, повышение точности измерения приращения электроемкости конденсатора АС по мере увлажнения находящегося в нем образца позволило провести более детальный, чем это делалось ранее, анализ диэлектрических изотерм сорбции воды на белках [659]. Полученные зависимости АС(а) имеют вид ломаных линий (рис. 15.1, кривая 4), причем первая точка излома находится в области заполнения активных центров сорбента молекулами воды. Основываясь на данных ЯМР, можно предположить, что первому участку диэлектрической изотермы соответствует сорбция молекул на двух активных центрах с помощью двух водородных связей, второму, с большим наклоном ДС/а, — сорбция молекул с помощью одной Н-связи и третьему участку, с еще большим значением АС/а, — сорбция молекул воды на ранее сорбированных молекулах. [c.245]

    Какую роль играют гистидин и аспарагиновая кислота в активном центре фермента при расщеплении белка трипсином  [c.343]

    Приведенные примеры показывают, что многие основные реакции, протекающие в активных центрах ферментов, можно моделировать, используя взаимодействие обычных органических соединений в отсутствие белков. Роль последних заключается в узнавании субстратов н их ориентации, а сама химическая реакция часто осуществляется под действием кофакторов (коферментов), которые в свою очередь должны специфически узнаваться белками или ферментами. Последняя глава этой книги посвящена химическим аспектам функционирования коферментов и их строению. [c.20]

    Среда активного центра отличается, как правило, сильно развитой микрогетерогенностью. Это связано с тем, что в образовании поверхностного слоя белков принимают участие не только заряженные и полярные аминокислотные остатки (которым, поскольку они сильно сольватированы, термодинамически выгодно контактировать с водой), но также частично и аполярные (углеводородные) боковые группы. Так, например, для а-химотрипсина методом рентгеноструктурного анализа [c.20]

    МИД, возникают положительно заряженные поверхности, образованные катионными головками ПАВ. Под действием кулоновских сил притяжения ионы брома собираются вблизи четвертичных атомов азота. Вокруг мицеллы формируется так называемый слой Штерна, где и проявляются наиболее интересные особенности химии мицелл. Внутри мицелла содержит очень мало молекул воды и образует углеводородное ядро. Именно это различие в полярности между внутренней частью и поверхностью делает мицеллы сходными с глобулярными белками. Полярность мицеллярных поверхностей в общем случае близка к полярности белков и занимает промежуточное положение менаду водой и этанолом. Поскольку активный центр фермента, очевидно, вовсе не полярен, даже когда фермент растворим в воде, весьма полезно и необходимо изучение мицелл [154, 155]. [c.284]

    В формировании активного центра принимают участие также молекулы воды, входящие в гидратационные слои, а в ряде случаев ионы металлов, связанные с белком, и органические- кофакторы. Определенную жесткость такой конструкции придают а-спирали, р-структуры и дисульфидные мостики. [c.19]

    Общим для большинства ферментативных систем является то, что субстрат связывается с активным центром двумя или большим числом точек. В качестве примера можно указать на сорбцию молекулы синтетического субстрата на активном центре папаина (стр. 19). Углеводородный фрагмент сорбируемой молекулы связывается с белком за счет гидрофобных взаимодействий. Дополнительную ориентацию ей придают 3 водородные связи (пунктир) с аминокислотными остатками белка 01у-66 и Азр-158. [c.23]


    В активных центрах ферментов в рамках относительно жесткой третичной структуры белка взаимодействующие функциональные группы уже в исходном состоянии реакции в гораздо большей степени сближены и сориентированы, чем в большинстве неферментативных внутримолекулярных процессов. [c.66]

    Однако чаще всего константы скорости образования комплексов субстратов или различных эффекторов с активными центрами ферментов несколько ниже диффузионного предела ( 10 —10 М -с- ) см. гл. VII. Это может быть связано с тем, что лиганд при комплексообразовании с активным центром встречает стерические затруднения со стороны рядом расположенных полипептидных цепей белка. С таким [c.29]

    Химический механизм реакций гидролиза, катализируемых химотрипсином. При гидролизе молекулы субстрата, сорбированной на активном центре, в роли атакующего нуклеофила выступает ОН-группа 5ег-195 [2, 6—9, 32]. Химика-органика, малознакомого со спецификой реакций, протекающих с участием белков, могло бы насторожить то, что нуклеофильность гидроксила серина в модельных низкомолекулярных соединениях низка, поскольку при физиологических значениях pH 7—8 группа ОН слабо ионизована (рКа 13,6) [33, 34]. В связи с этим укажем, что исключительно высокая активность 8ег-195 связана именно с его окружением в активном центре. Так, в среде 8 М мочевины (при денатурации белка) он теряет свои уникальные свойства [35, 36]. [c.129]

    Альтернативный механизм комплексообразования предполагает иную модель активного центра, в которой лиганд в принципе не может достичь связывающего центра без существенных конформационных изменений в молекуле белка (происходящих, возможно, лишь в переходном состоянии процесса комплексообразования)  [c.30]

    Структурные и термодинамические предпосылки механизма сближения и ориентации в ферментативном катализе. Итак, для эффективности катализа важно, чтобы замораживание реагирующих центров X и Y, которое происходит в комплексе XE-RY (и сопровождает образование связи E-R), как можно больше приблизило реакцию к переходному состоянию X...Y. Для этого необходимо, чтобы строение активного центра в высшей мере было комплементарным по отношению к той структуре молекулы субстрата, которую она должна принять в переходном состоянии реакции. Именно поэтому активный центр ферментов расположен обычно в складках полипептидных цепей, образующих как бы щель . Где-то в глубинных участках этой щели расположены аминокислотные остатки, взаимодействующие с субстратом. Благодаря такой структуре активного центра при переходе молекулы субстрата из свободнодвижущегося состояния (из раствора) в сорбированное состояние (когда она, образно говоря, втискивается в активный центр) происходит необходимое для реакции замораживание вращательных степеней свободы и сближение ее с каталитически активными группами белка. [c.56]

    Молекулярная структура кислородиереносящих белков удивительна в процессе биологической эволюции природа создала несколько типов молекул для переноса кислорода. Все они ярко окрашены. Кислородпереносящие белки можно разделить на три больших семейства гемоглобин, хорошо знакомое красное вещество в крови человека и многих других животных гемоцианин, голубой пигмент в крови многих моллюсков и членистоногих гемэритрин , белок вишневого цвета в физиологических л<идко-стях организмов некоторых мелких беспозвоночных. Все они относятся к металлопротеинам. Гемоглобины содержат железо в составе гема гемоцианины имеют в активных центрах два атома меди (разд. 6.5), а гемэритрипы — два атома железа. Гемоглобин— это красный белок красных кровяных телец, который переносит кислород из легких к тканям иа долю гемоглобина крови приходится примерно три четверти содержания железа в человеческом теле [232]. [c.359]

    Константы равновесия в том и другом случае отличаются незначительно (в 2—4 раза). В то же время при переходе от профлавина к родамину 6Q процесс комплексообразования красителя с активным центром замедляется почти в 10 paat Структуры молекул этих лигандов различаются в основном лишь тем, что молекула родамина 6Q содержит дополнительное бензольное кольцо. Как показало изучение температурной зависимости кинетики комплексообразования, энергия активации этого процесса порядка 17 ккал/моль (71,4 кДж/моль). С другой, стороны, известна, что энергия активации процессов, контролируемых диффузией, не превышает, как правило, 5 ккал/моль (21 кДж/моль) [62, 63]. Поэтому следует заключить, что образование комплекса химотрипсина с более объемной молекулой родамина 6G возможно лишь в результате конформационных изменений в молекуле фермента. Такой механизм (1.8) комплексообразования органических молекул с белками, по-видимому, весьма распространен. [c.31]

    Каталитическая роль — все клеточные катализаторы белки (активные центры фермента), структура активного центра фер1 1ента и структура субстрата — точно соответствуют друг другу. [c.262]

    Обычно активные центры ферментов включают части всех структурных доменов глобулярного белка. Активные центры всех известных мультидоменных белков (табл. 5.2) расположены между доменами (рис. 4.1). Эти домены определяются не только как глобулярные области, разделенные полостью активного центра, но имеют и другое характерное для доменов свойство — они связаны между собой только одной пептидной цепью (табл. 5.2). Субстраты и кофакторы обычно присоединяются к разным доменам. В случае NAD связывающий кофактор домен всегда имеет ту же самую с довольно развитой открытой поверхностью топологию н NAD присоединяется в эквивалентных положениях (рис. 5.17, б), что является результатом эволюции [254, 255]. Кроме того, этот домен обнаружен на N-конце трех дегидрогеназ и одной киназы [230— 233, 235], а также на С-концевой половине четвертой дегидрогеназы [234] и в средней части фосфорилазы [236], что указывает на возможность дупликации соответствующего гена и его переноса в другое место генома. Все эти факты, включение в активный центр частей различных доменов, наличие кофакторепецифичных доменов и возможность переноса домена дают основание предположить, что ферменты конструируются с использованием модульной системы кофактор и субстратспецифичные домены, необходимые для обеспечения заданной функции, отбираются и объединяются в одной цепи глобулярного белка [124, 256]. [c.117]

    Более или менее длинные цепи белков, как правило, формируют домены, представляющие собой свернутую в пространстве структуру, имитирующую маленькую белковую молекулу Доменам присущи функции связывания, и в ферментных белках активный центр располагается преимущественно на границе между двумя или большим числом доменов К настоящему времени установлено, что домены способны перемещаться друг относительно друга в процессе функционирования содержащей их молекулы В трипси-ногене домен из неупорядоченного состояния переходит в упорядоченное в ходе активации зимогена [c.70]

    Для получения и сохранения неравновесных форм металлсодержащих белков и исследования их спектральных и магнитных свойств была разработана специальная техника низкотемпературного восстановления [38]. В этом методе содержащая металл простетическая группа восстанавливается в замороженном водном растворе при температуре жидкого азота с помощью радиолиза. При этом образуются термолизованные электроны. Исходные препараты представляют собой белки, активные центры которых могут существовать как в окисленной, так и в восстановленной формах. [c.71]

    Наблюдаются часто случаи, когда одна молекула белка несет несколько активных центров, по-пидимому, независимо действующих (например, у гемоглобина пх 4). Существуют также примеры совмещения в одной молекуле белка активных центров разной структуры и функции. Например, функции цнтохрома В и лактикодегидразы совмещены у дрожжей в одной белковой молекуле (Мортон и Эплбн). [c.142]

    Одним из наиболее исследованных семейств ферментов являются сери-нопротеазы. Все они предназначены для расщепления полипептидньгх цепей белков по механизму, в котором участвует боковая цепь аминокислоты серина (— Hj—ОН), находящейся в активном центре фермента. Три такие протеазы (трипсин, эластаза и химотрипсин) синтезируются в поджелудочной железе и вьщеляются ею в кишечник, где они превращают содержащиеся в пище белки в аминокислоты, способные всасываться через стенки кишечника. Благодаря возможности легко изолировать эти ферменты и их сравнительно высокой устойчивости их удалось интенсивно исследовать химическими способами еще до того, как стало возможным проведение рентгеноструктурного анализа белков. В настоящее время биохимический и рентгеноструктурный анализы позволили установить достаточно ясную картину функции этих ферментов, иллюстрирующую два аспекта действия любых ферментов каталитический механизм и специфичность к субстрату. [c.318]

    В настоящее время метод остановленной струи широко приме-ляется для решения многих задач химической кинетики установление механизмов химической реакции, определение стадий, лимитирующих протекание реакции обнаружение промежуточных комплексов, определение кинетики ферментативных реакций, установление числа и концентрации активных центров фермента, изучение быстрых конформационны5( переходов в белках и нуклеиновых кислотах. Метод требует быстрой регистрации это единственное существенное ограничение его применимости. Особое внимание при применении метода остановленной струи необходимо уделять тер-мостатированию, так как разница в температурах в кювете наблюдения и растворе смеси реагентов может привести к большим оптическим ошибкам, затрудняющим установление механизма наблюдаемой реакции. Точность определения констант скоростей данным методом примерно такая, как и при обычных спектрофотометрических измерениях кинетики химических реакций. [c.28]

    Наряду с катализом за счет свободной энергии сорбции (см. 1—4 этой главы) ферментативные реакции находят источник ускорения в том, что молекула субстрата подвергается химической атаке не одной каталитической группой (как это происходит в гомогенно-каталитических реакциях второго порядка), а сразу несколькими. Это связано с тем, что третичная структура белка позволяет сосредоточить в активном центре фермента значительное число электрофильных и нуклеофильных групп, таких как имидазольная, карбоксильная, сульфгид-рильная, аммонийная, фенольная и др. (см. гл. I), которые, как известно из гомогенного катализа, представляют собой общекислотные и общеосновные катализаторы. Именно поэтому в промежуточных фермент-субстратных комплексах в принципе возможна атака сорбированной субстратной молекулы по механизмам общего кислотноосновного катализа. [c.61]

    Однако специфичные к активному центру ингибиторы имеют два недостатка. Во-первых, это активные молекулы и значительная часть их просто гидролизуется в водной среде. Во-вторых, они могут реагировать неспецифически с другими активными остатками на поверхности белка. [c.450]

    В общем случае значение а — это характеристика сорбционной способности активного центра данного фермента. Если а <С 1 (как, например, в рассмотренном катализе (3-галактозидазой), то субстратная группа К, по-видимому, либо погружаетгя (переносится из воды) в органическую среду белка не полностью, либо связывание ее требует термодинамически невыгодных затрат на конформационное изменение структуры того или другого реагента. Гидрофобное ферментсубстрат-ное взаимодействие может быть термодинамически более выгодным, чем это предполагает простая экстракционная модель (где а= 1). В этом случае активный центр должен содержать локальный участок с относительно невыгодной поверхностной энергией пограничного слоя белок — растворитель например, с гидрофобными боковыми группами [c.44]

    Авторы другой теории (Ламри и Эйринг [45, 461, Дженкс [29. 47]) полагают, что силы сорбции используются для создания напряжений (деформаций) в молекулах реагирующих компонентов, способствующих протеканию реакции. Если же активный центр фермента жесткий, то субстрат, чтобы он мог с ним связаться, должен претерпеть некоторую деформацию (см. рис. 17, III). При этом предполагается, что активный центр устроен так, что в результате деформации молекула субстрата активируется (т. е. приобретает некоторые свойства, важные для образования переходного состояния реакции). В противном случае, когда жесткой является молекула субстрата, а конформа-ционно лабилен фермент, схему катализа можно представить так же, как для механизма индуцированного соответствия (рис. 17, II). Легче всего представить индуцированное субстратом (или, в противном случае, белком) искажение конформации, которое включает сжатие (или растяжение) связей или изменение углов между связями. В общем случае, рассматривая строение молекулы субстрата или белка в более общем виде, под напряжением структуры можно понимать также и, например, десольватацию функциональных групп, принимающих участие в химической реакции. [c.60]

    Катализ амидной группой. Амидная группа — наиболее распространенная функциональная группа белков, поэтому ее возможное участие в качестве компонента активных центров ферментов вызывает несомненный интерес. По своим физико-химическим свойствам амидная группа весьма инертна. Это слабая кислота и слабое основание. Например, значение р/Са1 сопряженной кислоты ацетамида равно —0.48, а рЛ[ а2 = 15,1 [29]. Каталитические свойства амидной группы в межмолекулярных гидролитических реакциях неизвестны, однако она способствует значительному ускорению внутримолекулярных реакций. [c.90]

    Наиболее важная информация о строении молекулы химотрипсина (молекулярная масса 25 ООО) была получена с помощью рентгеност-зуктурных исследований последних лет, проведенных Блоу с сотр. 14, 17—19]. Как итог своих исследований авторы представили трехмерную модель молекулы химотрипсина (см. рис. 3). В согласии с ранними общими представлениями о строении белков было найдено, что все заряженные группы в молекуле этого фермента направлены в сторону водного растворителя (за исключением трех, которые выполняют специфические функции либо в механизме активации зимогена, либо в механизме действия активного центра). Особенности расположения аминокислотных остатков с гидрофобными боковыми цепями внутри белковой глобулы также согласуются с ранними представлениями о важной роли гидрофобных взаимодействий в стабилизации третичной структуры белков (см. гл. I). [c.127]

    Для объяснения этих фактов активный центр химотрипсина представляют обычно (в развитие идей школы Нимэнна [55, 64]) состоящим из участков, комплементарных по отношению к отдельным фрагментам молекулы специфического субстрата [7, 59, 65]. Движущая сила сорбции фрагмента К на ферменте — это гидрофобное взаимодействие. Фактически образование комплекса фермент — субстрат обусловлено тем, что боковая гидрофобная субстратная группа подвергается термодинамически выгодной экстракции из воды в органическую среду белка (см. 4—6 этой главы). Молекулярная модель активного центра была предложена Блоу с сотр. [66] на основании результатов рентгеноструктурного анализа кристаллического химотрипсина (см. рис. 9). Размеры гидрофобной полости в районе активного центра составляют (10—12) х(5,5—6,5)Х(3,5—4) А. Эти размеры достаточны, чтобы вместить боковую цепь триптофана или тирозина, но вместе с тем форма полости делает возможной только лишь одну, строго определенную ориентацию плоскости ароматического кольца. [c.134]

    В связи с этим интересно отметить, что эффективность адсорбции ароматических соединений на твердых поверхностях (угле) практически не зависит от наличия в ядре каких-либо заместителей [87, 88]. Поэтому в случае полуже-сткой модели гидрофобного кармана в белке, для того чтобы объяснить полную экстракцию глобулой различных гидрофобных заместителей в молекуле ингибитора, необходимо допустить, что аминокислотные остатки, расположенные вблизи щипцов , обладают все-таки некоторой подвижностью, которая обеспечивает обволакивание неароматических гидрофобных фрагментов псевдожидкой средой активного центра. [c.141]


Смотреть страницы где упоминается термин Белки активные центры: [c.338]    [c.320]    [c.633]    [c.365]    [c.345]    [c.378]    [c.378]    [c.470]    [c.471]    [c.17]    [c.21]    [c.23]    [c.35]    [c.61]   
Новые методы анализа аминокислот, пептидов и белков (1974) -- [ c.367 , c.372 , c.403 , c.404 ]




ПОИСК





Смотрите так же термины и статьи:

Активность Активные центры

Активный центр



© 2025 chem21.info Реклама на сайте